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Abstract. Change detection in remote sensing images is of great importance 
as a basis for a variety of tasks. However, traditional fully convolutional change 
detection networks lack global information, while transformer-based networks can 
extract global information, but the number of parameters and computational com-
plexity are too large. This paper proposes a lightweight change detection network 
that fuses global information, with only 2.1M parameters, to address these issues. 
The network combines the local information extracted by fully convolutional with 
the global information extracted by LSTM to take full advantage of both. Experi-
ments were carried out on three different types of datasets: LEVIR-CD, SYSU-CD 
and NJDS. The results show that the IOU of the model was improved by 0.94%, 
4.74% and 0.9% respectively. This confirms that the model has a high accuracy 
with a very small number of parameters and a low computational cost, providing 
a new solution for efficient change detection. 
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1 Introduction 

The successive launch of remote sensing has led to the development of a more com-
plete Earth observation system, with a notable increase in remote sensing images. These 
images provide support for monitoring the environment. Change detection in remote 
sensing imagery employs advanced algorithms to compare images of the same loca-
tion taken at different time intervals, automatically identifying regions with notable 
differences to detect changes on the Earth’s surface [1]. This technology is crucial 
for applications such as urban expansion monitoring, land use planning, and disaster 
prevention. 

Conventional change detection methods use algebraic techniques to analyze differ-
ence images [2], but they rely on manual feature extraction and threshold setting, making 
them unsuitable for complex scenes [3]. The rise of deep learning has shifted focus to 
end-to-end change detection methods that learn image features from large datasets via 
backpropagation, overcoming the instability of manual feature design.
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Remote sensing image change detection approaches based on deep learning are 
commonly trained using an end-to-end learning framework. Early approaches focused 
on fully convolutional networks, where remote sensing images from different time points 
are fused using simple channel-wise concatenation [4] or other specific fusion methods 
[5]. Change detection is then performed by leveraging the results of fully convolutional 
feature extraction networks and detection decoders. To enhance detection performance, 
attention mechanisms, such as channel-wise or spatial attention, have been integrated 
into the process [6]. 

Since the emergence of Transformers [7], numerous NLP techniques have been suc-
cessfully transferred to image analysis tasks. These methods incorporate Transformer-
based feature extraction and processing techniques into remote sensing image change 
detection [8]. Following extraction by the convolutional network, the feature map is 
reformulated into multiple vectors, facilitating the modeling of global dependencies via 
the self-attention mechanism. By combining this global information with local features 
extracted from the convolutional network, detection accuracy is significantly improved. 
However, while these Transformer-based methods deliver superior results, they come at 
the cost of a substantial increase in both parameters and computational complexity. 

One key challenge has been improving detection accuracy while minimizing model 
size. Fully convolutional networks offer an advantage in this regard, as they can boost 
accuracy by integrating lightweight convolutional attention mechanisms, thus maintain-
ing a relatively small model size with fewer parameters [9]. However, these models suf-
fer from the lack of global information fusion, resulting in lower detection performance 
compared to Transformer-based approaches. Some methods attempt to optimize self-
attention mechanisms to reduce parameter count [10], but the reduction in computational 
complexity is limited by the overall architecture. 

Accordingly, a lightweight Siamese-structured change detection network with non-
shared weights (LSNW) is developed in this work. The problem of missing global infor-
mation in traditional fully convolutional networks is solved. Incorporating global infor-
mation enhances the detection performance of the lightweight network across various 
dataset types. The primary contributions of this paper are outlined as follows: 

1. We design the LSNW change detection model that incorporates global information, 
where essential semantic change features are derived through hierarchical fusion of 
five local feature layers and one global feature layer. The network design with pseudo-
Siamese structure is adopted to map remote sensing image images at different times 
to different feature spaces to enrich the representation and improve the accuracy. 

2. We introduce a lightweight multi-level feature fusion module (MLFF) that performs 
feature transformation through cascaded upsampling. Temporal features are fused 
using spatial and channel-wise attention, enhancing change features and removing 
interference to generate a key difference feature map. 

3. The GFFM module, based on LSTM [11], is incorporated to replace self-attention 
and add global information to the feature map. Guarantee the fusion of global context 
with convolutional local features while maintaining a low parameter overhead. 

4. Performance evaluations on three complex remote sensing datasets confirm that our 
approach delivers improved accuracy with lower model complexity compared to 
state-of-the-art techniques.
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2 Methodology 

As illustrated in Fig. 1, the LSNW network adopts EfficientNet-B4 [12] as a lightweight 
backbone for extracting features. To process temporally distinct images, the network 
employs two independent branches with unshared weights. The resulting features are 
concatenated and fused initially through the MLFF module. The fused change feature 
maps are converted into vector groups and processed by the GFFM module for global 
fusion and transformation. The resulting features are then progressively upsampled and 
combined with encoder features to restore image details. Finally, the classification mod-
ule produces the upsampling and change detection results via a classifier. Figure icons

Fig. 1. An overview of the LSNW architecture is provided, with the configuration of the global 
feature fusion module (GFFM) depicted in the figure’s bottom-right inset. ‘EfficientNet Block’ is 
the module in the feature extraction network and “Classification” is the classifier, the structure is 
shown in Figure.
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represent the SE Block [13] (squeeze-and-excitation) and SiLU [14] activation function; 
other common elements are not detailed.

2.1 Global Feature Fusion Module (GFFM) 

LSNW uses a fully convolutional network that captures only local features. To integrate 
global context, we adopts an LSTM-based method inspired by the BIT model [8], trans-
forming convolutional feature maps into time-series data. The feature map is divided 
into vectors consistent with the original channel dimensions, which are then used as 
input tokens for the LSTM, which stores and transforms global information through 
its gating mechanism (memory, input, and output gates). This process reassembles the 
outputs into a feature map enriched with global context, effectively modeling long-range 
dependencies. 

The ‘memory gate’ filters out irrelevant information while preserving essential global 
image features. It processes the current input xt and previous hidden state output ht−1 
using a learned weight matrix, followed by a sigmoid function for gating. The resulting 
weight is applied to the stored global information, removing noise and retaining key 
semantic changes. The process is described in Eq. (1), where Wf is the weight matrix in 
the memory gate and bf is the bias vector. 

ft = σ
(
Wf ·

[
ht−1, xt

] + bf
)

(1) 

The “input gate” like the ‘memory gate’, receives the current input Xt and the previous 
transformed feature vector ht−1. It controls how new information updates the ‘cell’ 
state. Using a sigmoid function (Eq. 2), it computes the update ratio, then applies a Tanh 
function to transform the new input (Eq. 3). The retained portion is added to the previous 
global state Ct−1 to form the updated global information Ct (Eq. 4). The formula is as 
Eq. (4), where Wi and Wc are the weight matrices in the input gate, bi and bc are the bias 
vectors in the input gate. 

it = σ
(
Wi ·

[
ht−1, xt

] + bi
)

(2) 

c0 = tanh
(
Wc ·

[
ht−1, xt

] + bc
)

(3) 

Ct = ft � C{t−1} + it � c0 (4) 

Tasked with managing the transformation and delivery of information, the output gate 
determines the final output of the current cell’s feature vector. It receives the updated 
global state and current input Xt and ht−1, and uses a Tanh function to generate guiding 
information from the global state. This guide is multiplied with the processed input to 
produce a feature vector that embeds global context, which is then passed to the next 
‘cell’. The formula as shown in Eq. (5), where Wo is the weight matrix in the output 
gate and bo is the bias vector. 

ht =
(
σ

(
Wo ·

[
h{t−1}, xt

] + bo
)) � tanh (Ct ) (5) 

The GFFM module builds global context by sequentially storing feature vectors in 
long-term memory. It transforms each vector using this global reference, enriching the 
local feature map and enhancing the ability to distinguish changes.
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2.2 Multi-level Feature Fusion Module (MLFF) 

To generate change detection results, the MLFF module compares semantic differences 
between features from different time points to produce a change feature map. This 
map is fused with the original feature map to restore detail. The change features are 
then progressively upsampled, merging large- and small-scale changes at each level to 
produce the final fused result. The module’s structure is shown in Fig. 2. 

Fig. 2. Multi-Level Feature Fusion module (MLFF) structure diagram. (High Feature, HF; Low 
Feature, LF) 

In MLFF0, two feature maps, F1 and F2, from different time are fused. The fea-
tures are initially concatenated along the channel axis and then upsampled to align with 
the spatial dimensions of the low-level features. A single-layer perceptron with 1 × 1 
convolutions fuses the features, and after normalization, Relu is applied to filter change 
regions in the high-level features (HF). In MLFF, the fusion result from the upper layer 
is directly used as the change region discrimination result for high-level features, HF, as 
shown in Eq. (6). The obtained high-level features are then transformed through 1 × 1 
convolutions to obtain the transformed high-level features ’HF’, as shown in Eq. (7). 

HF =
{
Relu (BN (Conv1×1 (cat (F1, F2 ) ) ) ), MLFF0 

FF ′n−1 , MLFF 
(6) 

HF ′ = Relu(BN (Conv1×1(HF))) (7) 

The low-level features LF1 and LF2 from different tense levels are spliced by chan-
nels and input into a 1 × 1 convolution block for channel processing to fit the shape of the 
high-level feature HF’, in preparation for layer-by-layer contrastive fusion in multi-layer 
feature fusion, as shown in Eq. (8). 

LF = Relu(BN (Conv1×1(cat(LF1, LF2))) (8)
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After processing, high-level (HF) and low-level (LF) feature maps are resized to the 
same shape for guided fusion using the attention mechanism. In the channel attention, 
max and average pooling are used to derive a weight vector. The weights are applied to 
the corresponding channels of the input feature, and the fused feature (CF) is generated 
through element-wise multiplication, as shown in Eq. (9). Spatial attention follows a 
similar process, pooling across the channel dimension to calculate pixel-wise weights, 
resulting in the final feature fusion output (FF), as shown in Eq. (10). 

CF = HF ′ � σ (Add

(
MaxPoolsp

(
Conv1×1

(
ReLU

(
Conv1×1

(
HF ′))))

AugPoolsp(Conv1×1(ReLU (Conv1×1(HF ′))))

)

) (9) 

FF = CF � σ (Conv7×7

(
MaxPoolch(CF) 
AugPoolch(CF)

)
) (10) 

The feature map is subsequently processed by a 7 × 7 convolution with a larger 
kernel to aggregate a broader range of information. After upsampling, the result is the 
discriminative result FF’ for the change region of the current layer, which is used as the 
input for the next layer, as shown in Eq. (11). 

FF ′ = UpSample(ReLU (BN (Conv7×7(FF)))) (11) 

The MLFF module fuses multi-scale feature maps and feature maps of different tense 
through attention weighting in channel and spatial dimensions. By stacking multiple 
MLFF modules, the model continuously enhances the change information in the image. 
High-level features provide large-scale information, while low-level features capture 
detailed information. Together, they complement each other to produce a more precise 
change feature map. 

3 Experimental and Analysis 

3.1 Datasets 

LEVIR-CD [15]: The dataset contains high-resolution (0.5 m) Google Earth imagery 
spanning 5–14 years, with a focus on building changes. During training, images are 
divided into non-overlapping pairs of 256 × 256 patches. Following the dataset’s 
standard split, there are 7120 training pairs, 1024 validation pairs, and 2048 test pairs. 

SYSU-CD [16]: This dataset is based on aerial images of Hong Kong from 2007 
and 2015, with a 0.5 m ground resolution. Change labels are area-based rather than tied 
to specific building details. The dataset consists of 12,000 pairs for training, 4,000 pairs 
for validation, and 4,000 pairs for testing. 

NJDS [17]: This dataset includes Google Earth images of Nanjing from 2014 and 
2018, with a 0.3 m resolution, focusing on changes in buildings from different perspec-
tives. There are differences in the angle and position of the same buildings shown in 
the different time plots. The images were segmented into non-overlapping 256 × 256 
patches for further processing. After random splitting, the dataset contains 1521 training 
pairs, 504 test pairs, and 504 validation pairs.
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This paper analyzes the distribution of positive and negative pixels across the three 
datasets, as shown in Table 1. Negative samples significantly outnumber positive ones, 
causing the model to bias toward negative predictions during training, which reduces 
recall, F1 score, and IOU. 

Table 1. Positive and negative sample statistics in the datasets. 

Dataset Positive Sample Negative Sample Positive and negative sample ratio 

LEVIR-CD 95.35% 4.65% 1:19 

SYSU-CD 78.17% 21.83% 7:26 

NJDS-CD 96.84% 3.16% 1:24 

3.2 Experimental Setup 

• Evaluation metrics: Model accuracy is evaluated using four metrics: precision (Pre.), 
recall (Rec.), F1 score (F1.), and intersection over union (IOU). Model performance 
is assessed using parameter count (Params) and floating point operations (FLOPs). 

• Experimental setup: The change detection model was implemented in Python 3.9 
with PyTorch v11.2. AdamW optimizer was used with a 0.001 weight decay and a 
learning rate of 0.0002, employing a warm-up strategy. Training ran for up to 250 
epochs with a batch size of 16, using an NVIDIA A40 GPU (48 GB). 

3.3 Comparative Experiment 

We compare our method with ten state-of-the-art (SOTA) models. These include 
early fusion (FE-EF), Siamese CNNs (FC-Diff, FC-Conc) [4], convolutional networks 
with deep supervision (IFNet [6]), self-attention-based fusion (BIT [8]), hybrid CNN-
transformer models (ICIF [10]), lightweight networks (LightCD [9]), edge-aware detec-
tion (ELGC [18]), and transformer-based extraction (FTAN [19]). Results are presented 
in Table 2. 

The results show that LSNW achieves significantly higher recall than other methods, 
with slightly lower precision. This indicates better handling of class imbalance, as the 
model emphasizes hard-to-detect and positive samples. The higher F1 score confirms 
its superior overall detection accuracy. 

We selected three representative datasets from the three datasets for visualisation, as 
shown in Fig. 3. LSNW has shown good results in many types of change detection tasks. 
Combining change region discrimination with global information allows the model to 
more accurately detect the position of the change region in the middle. 

To assess the balance between accuracy and efficiency, we compared each model’s 
parameters, FLOPs, and IOU in Table 3. LSNW requires far fewer resources than 
self-attention-based models like BIT, ICIF, and FTAN, while outperforming fully 
convolutional methods in accuracy with lower parameter counts and computational cost.
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Table 2. Comparison results of three CD datasets. The optimal results are denoted as bold. All 
indicators are shown as percentages (%). 

LEVIR-CD SYSU-CD NJDS 

Method Pre. /Rec. /F1 Pre. /Rec. /F1 Pre. /Rec. /F1 

FC-EF(2018) 86.91/80.17/83.40 74.32/75.84/75.07 44.78/14.65/22.08 

FC-Diff(2018) 89.53/83.31/86.31 89.13/61.21/72.58 53.25/43.61/47.95 

FC-Conc(2018) 91.99/76.77/83.69 82.54/71.03/76.35 48.65/14.59/22.44 

IFNet(2020) 90.37/71.27/90.82 86.96/73.37/79.59 77.25/73.37/75.26 

BIT(2021) 89.24/89.37/89.30 81.14/76.48/78.74 80.24/65.70/72.25 

SNUNet(2021) 89.18/87.17/88.16 78.26/76.30/77.27 69.16/72.35/70.72 

ICIF(2022) 89.60/84.30/86.80 85.09/71.26/77.56 87.88/71.84/79.05 

LightCD(2023) 91.30/88.00/89.60 83.01/74.90/78.75 89.40/73.75/80.82 

ELGCNet(2024) 92.10/88.47/90.25 83.26/74.85/78.83 79.70/58.08/67.19 

FTAN(2024) 91.32/89.66/90.48 82.05/75.18/78.47 68.67/58.10/62.94 

LSNW(Ours) 92.24/90.52/91.37 83.01/82.85/82.93 84.04/79.03/81.46 

3.4 Ablation Experiments 

• Global Feature Fusion Level: The GFFM module in LSNW introduces global features 
to enhance convolutional outputs, with different fusion levels offering varying seman-
tic depth and computational cost. Experiments on the NJDS dataset (Table 4) show  
that lower-level feature maps (layers 3 and 4) provide richer global information but 
require more parameters and computation. Higher-level maps (layers 0 and 1) reduce 
cost due to smaller sizes. Adding GFFM at layer 1 reduced parameters by 24.43% 
and FLOPs by 10.65%, with only a 0.23% drop in F1. Thus, LSNW incorporates 
GFFM at layer 1 for optimal balance. 

• To assess the lightweight nature of the GFFM module, we compared it with the 
commonly used eight-headed self-attention module on the NJDS dataset (Table 5). 
The results show that GFFM significantly reduces parameters and computation com-
pared to self-attention. Additionally, adding self-attention in a single layer does not 
fully capture global information, while GFFM offers superior fusion and detection 
performance. 

• Module structure validity: To verify the validity of the non-shared weight struc-
ture design and global feature fusion design modules in the LSNW model, ablation 
experiments were performed on three datasets, and the results are shown in Table 6. 

The lightweight GFFM module, with only 0.14M parameters, significantly reduces 
computational complexity and parameters compared to self-attention-based fusion mod-
ules. Its performance varies across datasets. In SYSU-CD, dominated by large-scale
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Fig. 3. Visualization results on three datasets. (T1) T1 image. (T2) T2 image. (a) FC-EF. (b) 
FC-Diff. (c) FC-Conc. (d) IFNet. (e) BIT. (f) SNUNet. (g) ICIF. (h) LightCD. (i) ELGCNet. (j) 
FTAN. (k) LSNW. (GT) Ground Truth. TP (white). TN (black). FP (red). FN (green) (Color figure 
online) 

regional changes, global information improves regional discrimination and accuracy. In 
the NJDS dataset, which varies in perspective, it enhances semantic change identifica-
tion. In LEVIR-CD, a small-scale building change detection dataset, the improvement 
is limited due to the discrete nature of the change areas. 

“Different Branch” indicates whether non-shared weight branches are used. While 
these branches increase the model’s parameters, the same feature extraction network 
structure ensures that computation remains unchanged. In tasks with the same viewpoint, 
this design allows the model to learn features separately for different times, improv-
ing detection accuracy. For datasets like NJDS with varying viewpoints, non-changing 
regions may suffer from semantic errors due to viewpoint deviation. The local features 
from non-shared weight structures amplify this semantic bias, widening differences 
when mapped to feature spaces, ultimately reducing detection accuracy. 

When unshared weights are combined with the global feature fusion module, local 
feature discrepancies are corrected by the supplementary global information, improving 
detection results. On perspective-biased datasets like NJDS, the global features enhance 
the accuracy of feature maps, reducing local information errors and improving judg-
ment accuracy. The combined F1 and IOU metrics across three datasets demonstrate 
the effectiveness of this design, with IOU improvements of 0.5%, 2.05%, and 2.61%, 
respectively.
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Table 3. Comprehensive comparison of cost and accuracy calculation of different methods. The 
optimal results are denoted as bold. 

LEVIR-CD SYSU-CD NJDS 

Method Params(M) FLOPs(G) IOU (%) IOU (%) IOU (%) 

FC-EF(2018) 1.35 3.56 71.35 60.09 12.41 

FC-Diff(2018) 1.54 5.30 75.91 56.96 31.52 

FC-Conc(2018) 1.35 4.70 71.96 61.75 12.64 

IFNet(2020) 50.71 82.86 83.18 66.10 60.34 

BIT(2021) 3.55 67.80 80.68 64.94 56.55 

SNUNet(2021) 12.03 54.83 78.83 62.96 54.7 

ICIF(2022) 10.10 25.41 76.80 63.35 65.36 

LightCD(2023) 10.75 21.54 81.20 64.98 67.82 

ELGCNet(2024) 10.57 123.59 82.23 65.06 50.59 

FTAN(2024) 42.54 211.06 82.61 64.56 45.93 

LSNW(Ours) 2.10 2.35 84.12 70.84 68.72 

Table 4. GFFM module ablation experiments at different layers. The optimal results are denoted 
as bold. 

Layer Channels Feature Map Params(M) FLOPs(G) Pre./Rec./F1./IOU (%) 

0 56 32 × 32 2.038 2.34 80.75/80.08/80.41/67.24 

1 32 64 × 64 2.097 2.35 84.04/79.03/81.46/68.72 

2 24 128 × 128 2.368 2.40 79.35/79.73/79.54/66.03 

3 48 128 × 128 2.775 2.63 82.71/80.70/81.69/69.05 

4 48 128 × 128 2.775 2.63 80.28/81.41/80.84/67.84 

Table 5. Comparison results between GFFM module and self-attention module 

Method Params(M) FLOPs(G) Precision Recall F1 IOU 

Self-Attention 69.214 4.46 67.56 63.95 65.71 48.93 

GFFM 2.097 2.35 84.04 79.03 81.46 68.72
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Table 6. Ablation experiments of LSNW model on three datasets. The optimal results are denoted 
as bold. 

Dataset Different 
Branch 

GFFM Params(M) FLOPs(G) Pre./Rec./F1./IOU 

LEVIR-CD × × 1.020 2.32 91.94/90.23/91.08/83.62√ × 1.954 2.32 92.33/90.12/91.21/83.85 

× √
1.164 2.35 92.38/89.83/91.09/83.63√ √
2.097 2.35 92.24/90.52/91.37/84.12 

SYSU-CD × × 1.020 2.32 79.84/83.24/81.51/68.79√ × 1.954 2.32 84.90/79.30/82.00/69.50 

× √
1.164 2.35 84.12/80.08/82.05/69.56√ √
2.097 2.35 83.01/82.85/82.93/70.84 

NJDS × × 1.020 2.32 82.02/77.31/79.59/66.11√ × 1.954 2.32 78.3276.2177.2562.93 

× √
1.164 2.35 81.17/80.18/80.67/67.60√ √
2.097 2.35 84.04/79.03/81.46/68.72 

4 Conclusion 

This paper presents LSNW, a lightweight change detection model that improves accuracy 
through non-shared weight feature extraction and a lightweight global feature fusion 
module (GFFM) based on LSTM. The MLFF module fuses multi-scale image features 
to generate change detection results. Experiments on LEVIR-CD, SYSU-CD, and NJDS 
datasets show promising results. However, LSNW uses a general image feature extraction 
network, and there is potential for reducing parameters and computational complexity. 
Additionally, the GFFM module currently uses fixed-length inputs, which should be 
made more adaptable in future work. 
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