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Abstract: In order to solve the problem of low accuracy of parameter estimation 

in expectation maximization algorithm, a modeling method based on Gaussian 

component number reduction is proposed. Taking the nonparametric kernel 

density estimation results as the base Gaussian mixture model, the Gaussian 

mixture model with any number of Gaussian components can be established by 

reducing the number of Gaussian components by using the density-preserving 

hierarchical expectation maximization algorithm, which overcomes the problem 

that the expectation maximization algorithm has low parameter estimation 

accuracy when there are many Gaussian components. In order to reduce the burden 

of modeling calculation under large samples, a hierarchical modeling method 

based on time scale is proposed. In order to solve the problem of Gaussian 

component number combination explosion of independent random variables, a 

hierarchical modeling method of "combination-reduction" is proposed. The 

proposed method is tested by using measured multidimensional wind speed data 

and load data with complex distribution characteristics. The experimental results 

show that the Pearson and Spearman correlation coefficients of GMM constructed 

based on this method are very close to the sample data. The absolute value of 

Pearson correlation coefficient error is 0.03739, and the root mean square value of 

error is 0.02388. The absolute value of Spearman correlation coefficient error is 

0.11693, and the root mean square error is 0.05797. Conclusion: The accuracy of 

the proposed method is significantly better than that of Gaussian mixture model 

and Copula function method based on expectation maximization algorithm.  

Keywords: uncertainty analysis; Gaussian mixture model; Electric power system; 

Multidimensional random variables; Relevance; Wind power  

1. Introduction  

At present, the development of power system operation control and dispatching 

depends on "empirical analysis" and "off-line design". The basic idea is to perceive the 

system situation and analyze the situation, and the dispatcher gives the operation 

control strategy according to his own knowledge, experience, and off-line strategy. It 

takes minutes for normal dispatchers to complete the above processes, so traditional 

manual operation can only solve the problems of system operation and scheduling. For 

problems that are too late to perceive, analyze and make decisions, such as equipment 

or system failures, it is necessary to adopt preset protection settings and stable control 

strategies to solve them. In the traditional power system, this kind of preset protection 
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control depends on experience and deterministic criteria for setting, and its applicable 

scenarios are limited. With a large number of wind power, photovoltaic and electric 

vehicles connected to the power grid, the reform of the power market continues to 

advance, and the influence of the external environment on the power grid increases, the 

modern power system has strong uncertainty and complexity, and the system has many 

operation scenarios and strong coupling of protection and control, which leads to a 

decrease in the matching degree between the setting scheme and the operation 

scenarios and a decrease in the adaptability of the traditional methods [1-3].  

In order to solve the above problems, on the one hand, it is necessary to develop a 

more robust protection control system, on the other hand, it is even more necessary to 

quickly adjust the system operation mode, so that the system operation state can be 

maintained within the applicable range of protection and stable control, so as to realize 

the system security and stability in the whole time process. However, the ability of 

ordinary dispatching operators to process information and analyze problems is limited. 

With the increasing complexity of modern power system, it is more difficult to ensure 

the safe and economic operation of power system. Therefore, it is the right way to solve 

this problem by studying the methods of big data, domain knowledge and artificial 

intelligence (AI) and developing an industrial artificial intelligence system suitable for 

power system to help dispatchers make decisions more efficiently, quickly, 

conveniently and accurately.  

2. Literature review  

The uncertainty and weak controllability of the output of new energy sources such as 

wind power increase the risk of transmission congestion in the system. The occurrence 

of transmission congestion will not only affect the realization of unit power dispatching 

plan and the utilization rate of new energy, but also pose a serious threat to the 

adequacy and reliability of the system. At present, most congestion management 

methods for power systems with new energy sources are from the planning level, 

mainly by improving the topology of medium and long-term transmission networks, 

improving the weak links and transmission capacity limits of the system. From the 

short-term operation level, the research on congestion scheduling management methods 

can be mainly divided into two categories.  

The related research thinks that the uncertainty of wind power can be dealt with by 

increasing the positive and negative rotating reserve capacity, and the reserve capacity 

demand of the system is set to 20% of the predicted wind power output [4]. In addition, 

considering the distribution characteristics of new energy forecasting error and reserve 

constraints, combined with the forced outage rate of the unit, the required rotating 

reserve capacity is accurately quantified [5]. Shen and J divide the system into regions 

according to the similarity of transmission congestion distribution factors, define 

"congestion regions" and ensure the adequacy of spare capacity in each region, so as to 

reduce the congestion risk of lines in real-time operation [6]. Based on the risk 

optimization theory, Fan Fan, M put forward Dynamic Reserve at Risk,DRaR) and 

conditional reserve at risk (DCRAR) as evaluation indexes of system operation 

adequacy, and quantified the reserve demand level in each period to make the optimal 

decision-making scheme [7]. Zhang and F describe the uncertainty of wind power 

through multiple scenarios, and construct a two-stage stochastic planning and 

dispatching model, thus realizing the overall simulation of unit output planning and 

T. Zhang / Power System Uncertainty Modeling Based on Gaussian Process180



real-time power adjustment [8]. Tong, Z, based on the computing framework of SP, 

established a cooperative optimal scheduling model of source and load with the 

objective function of minimizing the expected total cost of the system. Because the 

optimal solution is closely related to the specific scenes generated, it is usually 

necessary to simulate a large number of scenes to ensure the accuracy of the optimal 

solution [9]. Therefore, it is proposed to simplify the original scene by scene reduction 

technology, and replace the original sample set with this subset for calculation [10].  

This paper analyzes the problem that the parameter estimation accuracy of 

multidimensional Gaussian mixture model, GMM) based on expectation-maximization 

(EM) algorithm is not high. A GMM modeling method based on nonparametric kernel 

density estimation and density-preserving hierarchical expectation maximization 

(KDE-DPHEM) is proposed. Based on the results of multidimensional kernel density 

estimation, KDE), GMM modeling is realized by reducing the number of Gaussian 

components, and the accuracy of GMM is significantly improved by increasing the 

number of Gaussian components, which overcomes the problem that EM algorithm is 

difficult to obtain high-precision GMM when there are many Gaussian components. On 

this basis, in order to reduce the computational burden of probabilistic modeling under 

large samples, a hierarchical modeling method based on time scale is proposed. In 

order to solve the problem of Gaussian component number combination explosion after 

multiple independent random variables are combined, a hierarchical modeling method 

of "combination-reduction" is proposed. Based on KDE-DPHEM algorithm, this paper 

systematically puts forward the modeling method of power system probability model 

based on multi-dimensional GMM, and comprehensively tests the proposed method by 

using the actually collected multi-dimensional wind speed and multi-dimensional load 

data. The results verify the effectiveness and advantages of the proposed method.  

3. Research methods 

3.1. GMM method based on KDE-DPHEM algorithm 

Using KDE method to model probability density function does not need prior 

information of random variable distribution type, and it can be used for arbitrary d 

Dimensional random variable x, based on n The joint probability density function 

estimated by KDE method is shown in Formula (1) [11-13]. 
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Where: f(x) for x Joint probability density function of; xi for x DediiSamples; n Is 

the number of samples; KHIs a kernel function. 

when KH When it is a Gaussian kernel function, KDE obtains a special GMM with 

the number of Gaussian components equal to the number of samples, and takes this 

model as the base GMM, as shown in Formula (2). 
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Where: f(b)(x) Based on GMMx Joint probability density function of; Kb Is the 

number of Gaussian components of the base GMM, which is equal ton; 
( )b

i
 Weidii 

The weight of a Gaussian component is equal to1/n; 
( )b

i
 Weidii The mean vector of 

Gaussian components is equal to the first.i Samplexi; 
( )b

i
 Weidii The covariance 

matrix of Gaussian components is equal to the bandwidth matrix.Hi. 

When the samples are sufficient and the bandwidth is appropriate, the base GMM 

based on KDE method is the most accurate GMM, and this model is often used as a 

benchmark model to evaluate the accuracy of parameter estimation methods. The 

Gaussian component number of base GMM is extremely large, which is not practical in 

the subsequent probabilistic uncertainty analysis of power system. Further, the basis 

GMM of the formula (2) is reduced to the basis GMM of the formula (3) Kr(Kr<Kb)The 

simplified GMM of Gaussian components adopts DPHEM algorithm in the reduction 

process. 
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DPHEM algorithm transforms the reduction of base GMM into the following 

optimization problem: satisfy the base model for probability distribution f(b)(x) Virtual 

sample set based onX, begf(b)(x) Parameters to simplify the model.f(b)(x) The expected 

value of log-likelihood function of is the largest, as shown in Equation (4). 
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Where: f(r)(x) To simplify GMMx Joint probability density function of; 
( )r

j


Weidij The weight of Gaussian components; 
( )r

j Weidij Mean vector of Gaussian 

components; 
( )r

j Weidij Covariance matrix of Gaussian components; Kr In order to 

simplify the Gaussian component number of GMM; Virtual sample setXbym Virtual 

samples {X1,X2,…,Xm} Composition, in the actual solution process does not need to 

really generate the sample; �For expectation. 

Equation (4) is solved by variational EM algorithm. The iterative steps of DPHEM 

algorithm are basically the same as those of conventional EM algorithm, which are 

divided into E-step and M-step, as shown in equations (5)-(9). 

E-step: 
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M-step: 
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Where: Zij Is a variational parameter; subscripti ∈[1,Kb]; subscriptl、j ∈[1,Kr]; tr Is 

the trace of the matrix; The number of virtual samples m is generally 10 times.Kb; Other 

symbols have the same meanings as Formula (2)-(4). 

Because the basis GMM in this paper is obtained by KDE method, large 

numbersm Will lead to the formula (6) exp (mEi,j)The numerical value overflows, and 

there is a numerical problem of 0/0. Based on equations (5) and (6), this paper proposes 

an improved E-step, as shown in equations (10)-(12). Compared with the 

Log-Sum-Exp technique.ln(zij) , and then calculate exp [ln(zij)]The algorithm in this 

paper has higher computational efficiency and better numerical stability [14-15]. 
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KDE and DPHEM constitute a two-stage KDEDPHEM algorithm, which can 

realize the modeling of any Gaussian component GMM and overcome the bottleneck 

problem of parameter estimation of EM algorithm for more Gaussian components 

GMM. 

3.2. Hierarchical modeling of time scale for large samples 

The sample size of power data is increasing. In order to reduce the computational 

burden of modeling, a hierarchical modeling method based on GMM model 

characteristics and DPHEM algorithm is further proposed. Taking the two time scales 

of month and year as an example, the monthly scale probability model is first 

constructed, and each monthly scale sample is the conditional probability sample of the 

annual scale sample. Further, the 12-month scale model is accumulated into the annual 

scale model with the proportion of the number of samples in each month as the weight. 

Fig. 1 is a schematic diagram of the modeling flow of a two-layer structure. Suppose a 

sample X The sample size of is n, according to the monthly scale samples. X be split 

into M Block, each sample is recorded asXb1、Xb2、… 、XbM , the number of samples 

per block is: n1、n2、… 、nM. GMM is established for each sample by KDE-DPHEM 

algorithm, and the number of Gaussian components of GMM for each sample is as 
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follows:Kb1、Kb2、… 、KbM, the first M The joint probability density function of the 

blocks is shown in Formula (13). According to the total probability formula, X The 

joint probability density function of is composed of Xb1、Xb2、… 、XbM The joint 

probability density function and the corresponding sample number ratio are 

accumulated as weight coefficients, and the annual scale based GMM model is shown 

in Formula (14). Gauss component number of formula (14) K = Kb1 + Kb2 + ⋯ + KbM ; 

such as K If it is too large, further reduction is carried out by using DPHEM algorithm, 

and the annual scale simplified GMM shown in equation (15) is obtained. Consider that 

more general case, the sample X Divided into multiple layers according to the time 

scale, we only need to model the bottom time scale directly, and then aggregate from 

the bottom time scale layer by layer until the top time scale. The time scale layering 

method not only reduces the computational burden of large sample modeling, but also 

obtains multi-time scale probability models, and the modeling process can be 

parallelized [16-19]. 

 
Fig. 1 Time-scale hierarchical modeling method for large samples 
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3.3. "Combination-Reduction" Hierarchical Modeling of Combination Explosion 

In the actual power system, variables may be correlated or independent. Assume that 

the system has P Group multidimensional random variables ξ(1)
、ξ(2)

、… 、ξ(P) Groups 
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are independent of each other, forming a multidimensional random variable. ξAs 

shown in formula (16) [20]. 

 
(1) (2) ( )

, , ,

T
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Arbitrary firstp Group random variable ξ(p) The joint probability density function of 

is αp The GMM model composed of 10 Gaussian components is shown in Formula 

(17). 
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Where:  ( )pf  for 
( )pξ Joint probability density function based on GMM; 

( )p

k for  ( )pf   sequencek The weight of Gaussian components; 
( )p

kμ for 

 ( )pf  sequencek Mean vector of Gaussian components; 
( )p

kΣ for  ( )pf 

sequence k Covariance matrix of Gaussian components. 

According to probability theory, ξThe joint probability density function of can be 

derived as shown in formula (18), and the number of Gaussian components is α. The 

corresponding Gaussian component parameters are shown in equations (19)-(21). 
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Where: f(ξ) for ξ Joint probability density function based on GMM; 
k

 for f(ξ) 

sequencek The weight of Gaussian components; 
k

μ for f(ξ) sequence k Mean vector 

of Gaussian components; 
k

 for f(ξ) sequence k Covariance matrix of Gaussian 

components; lp ∈[1, αp], p ∈[1, P]. 

ξGaussian component number of α Will follow P Increasing the problem of 

combined explosion leads to a great amount of calculation in the analytical method of 

probability uncertainty analysis of power system. Taking the independent load of 10 

nodes as an example, that is, the dimension of each group of random variables is 1, 

assuming that each load GMM model only uses 4 Gaussian components, the 

combination number of 410 will make the analytical method lose its efficiency 

advantage. In the scene with more complicated probability distribution and more nodes, 

the combined Gaussian components will be astronomical. 
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Aiming at the above-mentioned combined explosion problem, a hierarchical 

modeling method of "combination-reduction" is proposed based on GMM model 

characteristics and DPHEM algorithm. Only two groups of random variables are 

combined at a time: f(ξ(1)) and f(ξ(2)) Combine f(ξ(1,2)); f(ξ(3)) and f(ξ(4)) Combine f(ξ(3,4)); 

…; f(ξ(P−1)) and f(ξ(P)) Combine f(ξ(P−1,P)). After combination f(ξ(1,2))、 f(ξ(3,4))、

…f(ξ(P−1,P)) It is still a multi-dimensional GMM model and still independent of each 

other, and the above process can be further repeated. Before combining again, the last 

combination result is reduced by DPHEM algorithm, that is f(ξ(1,2))、f(ξ(3,4))、…f(ξ(P−1,P)) 

Reduce to f(r)(ξ(1,2))、f(r)(ξ(3,4))、…f(r)(ξ(P−1,P))Then combine in pairs, so as to avoid 

combination explosion. For P groups of multidimensional random variables, the above 

method only needs P-1 "combination-reduction" operation, and the computational 

complexity is linear with P. The reduction step of the above method will produce a 

certain precision loss. The smaller the error between the joint cumulative probability of 

the obtained model and the original model, and the closer the Pearson correlation 

coefficient of any two groups of independent random variables is to zero, the smaller 

the precision loss is. The intermediate GMM in the reduction process and the Gaussian 

component number of the GMM finally obtained can be configured according to the 

accuracy requirements and computing power. 

4. Result analysis 

4.1. performance verification of GMM method based on KDE-DPHEM algorithm 

The wind speed of NaselleRidge and Megler in BPA Power Bureau in January 2016 

was taken as the test data, and the wind power output was converted from wind speed 

according to IEC Class II fan model. NaselleRidge and Megler are about 18km apart, 

and the wind speed has a significant correlation. The joint probability density functions 

of wind speed and wind power are modeled respectively, and the errors of GMM 

method based on EM algorithm, GMM method based on KDE-DPHEM algorithm and 

Copula function method are compared with the KDE results. GMM methods based on 

EM and KDE-DPHEM algorithms are tested by different Gaussian components. The 

Copula function method adopts Gaussian, T, Clayton, Frank, Gumbel and many kinds 

of mixed Copula respectively. The root-mean-square error, RMSE) of joint probability 

density function is used for comparison, and 40,000 sampling points are evenly divided 

into 200×200 grids in the defined domain, and the root-mean-square error is obtained 

by statistical calculation of each point error. 

The optimal Copula is t-Frank-Gumbel mixed Copula. When the number of 

Gaussian components is less than 10, the GMM errors based on EM algorithm and 

KDE-DPHEM algorithm are greater than the optimal Copula function. When the 

number of Gaussian components is greater than 10, the GMM error based on EM 

algorithm decreases slowly with the increase of Gaussian components. When the 

number of Gaussian components is greater than 20, the error level of GMM based on 

EM algorithm has not been significantly improved. When the number of Gaussian 

components is greater than 20, the error of GMM based on KDE-DPHEM algorithm is 

obviously lower than that of EM algorithm, and the error is obviously reduced with the 

increase of Gaussian components. When the number of Gaussian components is greater 

than 40, the error is less than half of the optimal Copula function. When the number of 
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Gaussian components is increased to 100, the error is only 18.54% of the optimal 

Copula and 20.56% of the EM algorithm. 

The joint probability density function of wind speed and wind power output 

obtained by different methods, the Gaussian component number of GMM is 100. In the 

GMM modeling of wind power output based on EM algorithm, the covariance matrix 

is ill-conditioned in the iterative process, and the GMM result based on EM algorithm 

is better before the ill-conditioned problem appears. The whole and details of GMM 

based on KDE-DPHEM algorithm are highly similar to those of KDE and histogram, 

and the density characteristics of each local area are described in detail. The outer 

contour of GMM results based on EM algorithm is similar to that of KDE, but the 

detail error is large. The high-density region of t-Frank-Gumbel mixed Copula is 

similar to that of KDE and histogram, but it also has the problems of overall similarity 

and large detail error. Compared with KDE and histogram, Gaussian Copula is quite 

different, which shows that Gaussian Copula is not suitable for describing the 

correlation structure of wind speed and wind power output in NaselleRidge and Megler. 

The above results show that GMM method based on KDE-DPHEM algorithm has the 

advantage of high accuracy, and the modeling accuracy is significantly better than 

GMM method based on EM algorithm and the optimal Copula function method. 

4.2. Verification of Time Scale Hierarchical Modeling Method 

The 5-minute wind speed of NaselleRidge and Megler wind stations from January 2015 

to December 2017 is selected as the test data, and the joint probability distribution of 

wind power output of the two stations is taken as the modeling goal. The total sample is 

about 315,000 sets of two-dimensional data. The data are divided into 12 blocks by 

month, and each sample has an average of about 26,000 sets of data. The time-scale 

hierarchical method is used to model. Based on the results of KDE, the annual scale 

GMM obtained by time scale layering method is compared with the annual scale GMM 

obtained by direct modeling, and the k of annual scale GMM and monthly scale GMM 

are set to 100. 

The error analysis of the joint probability density function obtained by modeling is 

shown in Table 1. The results obtained by time scale method have high similarity with 

KDE and histogram, but little difference with direct method. Table 1 shows that the 

error of the time-scale hierarchical method is in the same order of magnitude as that of 

the direct method, the calculation time required is 44.39% of that of the direct method, 

and the amount of data to be processed by the single DPHEM algorithm is about 1/12 

of that of the direct method, and the calculation complexity is significantly reduced. 

The 12-month monthly scale probability model obtained by time scale stratification 

method and its aggregated annual scale basis GMM belong to the intermediate model 

of time scale stratification method. The monthly scale model can be used for the 

probability analysis of monthly scale; The error of annual scale basis GMM is about 

half of the final simplified GMM, which can be used when higher accuracy is required. 
Table 1 Comparison of annual scale model errors and time consumption of different methods 

way Root Mean Square Error (RMSE) Time /s 

probability density cumulative probability 

YB model 3.17×10-2 3.05×10-4 239.41 

YR model 6.39×10-2 8.08×10-4 233.02 

YD model 8.56×10-2 6.22×10-4 482.17 
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4.3. High-dimensional correlation modeling verification 

In order to further verify the high-dimensional modeling ability of the method proposed 

in this paper, all related random variables in IEEE33-node distribution network are 

modeled by multi-dimensional GMM. The correlation load data of 32 nodes connected 

with load in IEEE33-node distribution network consists of 192 residential loads 

superimposed in turn every 6 households, and scaled to the average value consistent 

with the original deterministic load; Four groups of wind turbines with rated power of 

0.4MW are connected to four different nodes, and the relevant wind power output is 

obtained by converting the wind speed of four wind stations (Naselle Ridge, Megler, 

Troutdale and BiddleButte) of BPA Power Bureau according to the method in Section 

4.1. Due to a large number of missing wind speed data in the first half of 2010, the load 

and wind power data are unified in the second half of 2010, with a data resolution of 

10min, about 26,000 pieces, and a data dimension of 36 dimensions. Random variables 

in each dimension are recorded as x1、x2、…、x36, x1—x32 Corresponding to the active 

load of 2-33 nodes, x33—x36 Corresponding to the active output of four groups of wind 

power, the data takes the load as positive and the output as negative. 

The computer configuration used for modeling is Intel Core i7-10510UCPU and 

16GB memory. The time scale layering method is adopted, and the Gaussian 

component number of the monthly scale GMM is set to 1000, and the Gaussian 

component number of the semi-annual scale GMM is set to 100. The total modeling 

time is 608.02s. Pearson and Spearman correlation coefficients of GMM constructed 

based on this method are very close to the sample data. The absolute value of Pearson 

correlation coefficient error is 0.03739, and the root mean square value of error is 

0.02388. The maximum absolute error of Spearman correlation coefficient is 0.11693, 

and the root mean square error is 0.05797, which proves that the method proposed in 

this paper has good high-dimensional correlation modeling ability. In the actual 

larger-scale system, the correlation random variable has regional characteristics, and 

the correlation within the region is significant, but the correlation between regions is 

low. At this time, it can be modeled by regions, and then a higher-dimensional GMM 

model of the whole system can be formed by the "combination-reduction" method. 

5. Conclusion 

In this paper, based on KDE-DPHEM algorithm, the probabilistic modeling method of 

power system based on multidimensional GMM is systematically improved, and the 

effectiveness of the proposed method is verified by an example test. The main 

conclusions are as follows: 

1) KDE-DPHEM algorithm can continuously improve the accuracy of GMM 

model with the increase of Gaussian components, which overcomes the bottleneck that 

the accuracy of EM algorithm is difficult to improve after the number of Gaussian 

components is greater than 10. By increasing the number of Gaussian components, 

GMM model approaching KDE results can be obtained, and the modeling accuracy is 

significantly higher than that of Copula function method and EM algorithm. 
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2) The hierarchical modeling method of time scale effectively reduces the 

computational burden of GMM modeling under large sample data and can obtain 

multi-time scale intermediate models. 

3) The hierarchical modeling method of "combination-reduction" effectively 

solves the problem of Gaussian component number explosion after the combination of 

independent random variables. 

4) The proposed method accurately describes the complex correlation structure of 

high-dimensional random variables, and the large-scale correlation coefficient matrix 

of the high-dimensional model is close to the actual value. 

5) The proposed method studies the modeling method of GMM with a given 

number of Gaussian components. According to the experience of an example, setting 

the number of Gaussian components to 100 orders of magnitude can get a higher 

precision result. In the future, we will further study how to balance the number of 

Gaussian components and model accuracy and realize the adaptive configuration of 

Gaussian components. 
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