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Abstract: Currently, autonomous flight control for unmanned aerial vehicles (UAVs) has
become increasingly critical in remote-sensing applications, such as high-resolution data
acquisition and road disease detection. However, this task also faces significant challenges,
particularly the weak GNSS signals in flight areas and the complex flight environment.
Furthermore, many existing autonomous-flight-control algorithms for UAVs are computa-
tionally demanding, which limits their deployment on embedded devices with constrained
memory and processing power, thereby affecting both operational efficiency and the safety
of UAV missions. To address these issues, we propose PISCFF-LNet, a lightweight road-
extraction network that integrates prior knowledge and spatial contextual features. The
network employs a dual-branch encoder architecture to separately extract spatial and con-
textual features, thus obtaining multi-dimensional feature representations. In addition, to
enhance the integration of different features and improve the overall feature representation,
we also introduce a feature-fusion module. To further enhance UAV performance, we
introduce an improved ray-based eight neighborhood algorithm (RENA), which efficiently
extracts road-edge information with a remarkably low latency of just 7 ms, providing
accurate flight guidance and reducing misidentification. To provide a comprehensive
evaluation of the model’s performance, we have developed a new drone remote-sensing
road-semantic-segmentation dataset, DRS Road, which includes approximately 2600 ultra-
high-resolution remote-sensing images across six scene categories. The experimental results
demonstrate that PISCFF-LNet achieves improvements of 1.06% in Intersection over Union
(IoU) and 0.83% in F1-Score on the DeepGlobe Road dataset, and 1.03% in IoU and 0.57%
in F1-Score on the DRS Road dataset, compared to existing methods. Finally, we applied
the algorithm to a UAV, using a PID-based flight-control algorithm. The results show that
drones employing our algorithm exhibit superior flight performance in both simulated and
real-world environments.

Keywords: semantic segmentation; remote sensing; UAV; deep learning; road extraction

1. Introduction
1.1. Overview

Unmanned aerial vehicles (UAVs), also known as drones, are intelligent flying ma-
chines driven by power and remotely controlled or capable of autonomous flight [1].
Due to their light weight, flexibility, and high integration, UAVs have shown immense
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application potential in fields such as remote sensing, agriculture, and transportation. How-
ever, as mission complexity continues to rise, the demand for intelligent and autonomous
UAVs has become increasingly urgent. Autonomous flight control, particularly in complex
environments, has become a key focus for both academia and industry.

Currently, research on autonomous flight is mainly focused on the improvement
and optimization of navigation systems, which are typically categorized into four major
approaches: GNSS/INS navigation systems, LiDAR, visual sensors, and multi-sensor fusion
methods [2]. Among them, UAV navigation based on visual sensors not only extends the
scope of UAV applications but also significantly enhances their adaptability in complex
environments [3]. Compared to traditional GNSS or LiDAR systems, visual sensors offer
advantages such as light weight, low cost, and low power consumption, and they can
provide rich environmental information, especially in structured and semi-structured
environments, enabling real-time perception and navigation. Additionally, visual sensors
can be combined with other sensors (e.g., IMUs) [4] to achieve higher-precision positioning
and state estimation. Therefore, vision-based navigation methods have unique application
potential in indoor environments, low-light conditions, and scenarios where GNSS signals
are insufficient.

Vision-based navigation methods are based on machine learning, which can be further
divided into traditional machine learning methods and deep learning methods. Traditional
machine learning methods were widely used in early UAV navigation research. These meth-
ods typically rely on feature extraction and manually designed algorithms. For example,
traditional machine learning algorithms such as Support Vector Machines (SVMs) [5], Ran-
dom Forests (RFs) [6], and k-Nearest Neighbors (k-NNs) [7] achieve UAV localization and
path planning by extracting features and classifying images or sensor data. These methods
are computationally efficient and can perform well in simpler tasks, such as navigation and
obstacle avoidance. However, they have significant limitations. First, they often depend
on manually designed features, and the feature-extraction process relies heavily on expert
experience, making it both cumbersome and poorly adaptive to complex scenarios. Second,
traditional methods are prone to overfitting when handling large-scale data and tend to
perform poorly in dynamic and complex environments, especially when the environment
changes rapidly or tasks become diversified, making it difficult to maintain efficiency
and accuracy.

Deep learning methods, a major breakthrough in artificial intelligence in recent years,
have overcome many of the limitations of traditional machine learning methods. In UAV
visual navigation, deep learning, particularly convolutional neural networks (CNNs) [8],
learns high-level features from data automatically, significantly improving the UAV’s
ability to autonomously navigate in complex environments. Deep learning can extract rich
features from large amounts of training data, offering stronger adaptability and robustness,
especially in dynamic and changing environments. It can effectively deal with challenges
such as occlusion and illumination changes. Among them, road extraction, i.e., road
semantic segmentation, has become one of the technologies used in UAV autonomous flight.

Semantic segmentation aims to classify each pixel in an image into a specific category,
enabling the precise identification and separation of different environmental elements. Early
semantic segmentation methods, such as fully convolutional networks (FCNs) [9], applied
fully convolutional networks to pixel-level classification, achieving basic semantic segmen-
tation. These methods usually have lower computational complexity and are suitable for
simpler scenarios, but they have certain limitations in multi-scale feature extraction and
precise boundary processing. In recent years, improvements in deep network architectures
have led to significant progress in semantic segmentation tasks. For example, networks like
U-Net have enhanced segmentation accuracy through an encoder–decoder structure, while
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introducing skip connections to preserve high-resolution features. Furthermore, methods
based on deep residual networks (ResNet) [10] and attention mechanisms [11] can improve
segmentation accuracy and robustness by extracting deeper features and performing more
refined pixel-level classification.

In traditional U-Net networks [12], each layer processes images through an encoder–
decoder structure while using skip connections to preserve low-level detail features. This
design enables the network to effectively fuse high-level semantic information and low-level
detail features when recovering image resolution, thus improving semantic segmentation
accuracy. However, this structure also has some shortcomings, particularly when dealing
with fine boundaries and multi-scale features, where U-Net often struggles to achieve
optimal fusion, leading to blurred boundaries or the inaccurate segmentation of small
objects. To address these issues, researchers have proposed several improvements to en-
hance U-Net’s performance. For example, Li et al. proposed U-Net++, which introduces
denser skip connections and multi-scale fusion modules to enable the more effective in-
teraction and fusion of features between different layers, thus improving the recovery of
complex boundaries. Zhang et al. proposed Attention U-Net, which introduces an attention
mechanism in skip connections, allowing the network to dynamically select and focus on
important regions of the image, thus reducing background interference while improving
segmentation accuracy. Models such as DeepLabV3, based on dilated convolutions, ex-
tract features at multiple scales and perform post-processing using Conditional Random
Fields (CRFs), allowing the model to better handle small object segmentation in large-scale
scenes [13]. However, these methods involve significant computational overhead, making
them challenging to apply in real-time scenarios. Therefore, designing a road-semantic-
segmentation network that balances accuracy and real-time performance is crucial for UAV
autonomous flight.

To solve these issues, this paper proposes a UAV autonomous cruising algorithm
based on road extraction, utilizing a lightweight semantic segmentation network PISCFF-
LNet to extract road information and generate navigation instructions. The network
is based on the lightweight architecture UNeXt [14], which incorporates a dual-branch
encoder and feature-fusion module, effectively addressing the multi-scale feature-fusion
problem. Additionally, the ray-based octagonal neighborhood algorithm is introduced
to quickly extract road edges, improving both the accuracy and real-time performance
of road semantic segmentation. Moreover, this study constructs a UAV road-semantic-
segmentation dataset containing 2600 ultra-high-resolution images to provide high-quality
support for model training and evaluation.

The main contributions of this paper are as follows:

1. A lightweight network based on prior-information assistance and context feature fu-
sion is proposed, PISCFF-LNet, significantly reducing model parameters and latency,
making it suitable for deployment on edge devices;

2. A feature-fusion module is designed to integrate shallow and deep encoder features,
enhancing the network’s ability to handle multi-scale information;

3. A vision-assisted UAV autonomous-flight-control method is proposed, RENA, opti-
mizing road-edge extraction with the ray-based octagonal neighborhood algorithm to
achieve basic terrain-following flight;

4. A high-resolution UAV road-semantic-segmentation dataset is constructed, DRS Road,
providing standardized data support for related research.

1.2. Autonomous Flight of UAVs

The GNSS/INS navigation system-based approach was a major focus of early research
on UAV autonomous flight. GNSS provides basic navigation support for flight-control
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platforms by acquiring real-time position information of the UAV. However, GNSS signals
are susceptible to environmental interference, such as multipath effects in urban areas or
canyons and signal loss in enclosed spaces. Therefore, enhancing or improving GNSS
signals has become a research direction. For example, Yun et al. [15] proposed an enhanced
scheme for receiving GNSS signals in UAV systems, using Kalman filtering combined
with a complementary filter to regenerate smooth and accurate signals, improving the
UAV’s positioning ability in dynamic environments, thus enabling autonomous flight.
Additionally, researchers have integrated inertial navigation systems (INSs) or inertial
measurement units (IMUs) with GNSS to improve navigation accuracy by compensating for
accumulated errors. A Nemra et al. [16] proposed a new GNSS/INS sensor fusion scheme
based on the state-dependent Riccati equation (SDRE) nonlinear filter, which reduces the
linearization error of the extended Kalman filter (EKF) and enhances the UAV’s positioning
performance, enabling autonomous flight with the help of maps. Although such methods
perform well in open environments, they still face significant limitations in scenarios with
weak or no GNSS signals.

To overcome the shortcomings of navigation systems in information acquisition, some
scholars have proposed using LiDAR to provide position and attitude estimation support
for UAVs by constructing high-precision 3D maps. LiDAR has the advantages of high mea-
surement accuracy and strong anti-interference ability, enabling precise navigation in weak
GNSS environments. Tao Yang et al. [17] proposed a SLAM method combining three-point
features and median filtering to remove noise, constructing grid maps at different heights
to allow the UAV to carry out autonomous route planning. Ziyi Qiu et al. [18] proposed a
LiDAR navigation system based on global ArUco, using LiDAR, IMU, and global ArUco
information to calculate the UAV’s pose in the real coordinate system, achieving precise
flight navigation.

In addition, multi-sensor fusion methods have been proposed, combining Li-
DAR and visual sensor information to provide spatial position data for navigation.
Bachrach A. et al. [19] proposed a data fusion method based on LiDAR, IMU, and monocu-
lar cameras to enable UAVs to perform obstacle avoidance and navigation in both indoor
and outdoor environments. P. Sakthivel et al. proposed a vision-based obstacle-size-
estimation algorithm and distance estimation using LiDAR for autonomous UAV naviga-
tion, achieving real-time obstacle avoidance flight with an error of 0.01 m [20].

Although the two LiDAR-based autonomous flight methods mentioned earlier have
high accuracy, they require substantial computational power, impose high hardware per-
formance requirements, and involve expensive equipment. Additionally, the complex
modeling and computations typically rely on high-performance ground stations, limiting
their application on small multirotor UAVs.

Vision-based UAV navigation methods are widely used in the industry due to the
lightweight, low-cost, and anti-interference properties of sensors. With the rapid devel-
opment of deep learning, the precise control of UAVs with a single visual sensor for
autonomous flight has become feasible. Early visual navigation methods used optical flow
sensors. Nils Gageik et al. [21] proposed a UAV navigation method combining optical flow,
inertial, ultrasonic, and infrared sensors, using optical flow for 2D positioning while other
sensors assist with obstacle avoidance and error reduction, achieving autonomous flight
without external reference systems. With the rapid advancement of deep learning, attention
has shifted to autonomous flight methods using visual information combined with deep
learning algorithms. Arshad et al. [22] proposed a data-driven strategy based on deep con-
volutional neural networks for UAV navigation in complex dynamic environments. Yumin
Zhao et al. [23] proposed a deep learning-based autonomous UAV exploration method
(DLAE), which combines position and yaw actions to overcome field-of-view limitations
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and designs an autoregressive network model to improve the UAV’s exploration efficiency
and decision-making time. The methods mentioned above are primarily applied to obstacle
avoidance tasks in indoor environments and are not suitable for autonomous drone flight
and remote-sensing data collection tasks in outdoor scenarios.

To address this issue, this study proposes a drone navigation method based on deep
learning and visual navigation techniques. The method introduces a lightweight road-
extraction network, PISCFF-LNet, and the RENA algorithm. Compared to methods such as
LiDAR and multi-sensor fusion, this approach requires significantly lower computational
power, with a floating-point operation count of 5.38 G and only 2.31 million parameters. It
can be deployed on edge devices like the Nvidia TX2, requires only visual sensors, is easy
to deploy, and has lower costs, while still effectively guiding the UAVs’ flights.

1.3. Road Extraction

Traditional image-processing methods for road extraction mainly rely on the geometric,
texture, and spectral features of the road, using manually designed features, operators,
and parameters based on empirical knowledge. However, in complex road scenes, these
methods struggle to achieve high accuracy. In recent years, the advent of deep learning
methods has led to breakthroughs in road extraction, making it a current research hotspot
and trend.

Ren et al. [24] developed a capsule-based U-Net architecture, combining capsule repre-
sentations with the advantages of attention mechanisms. This approach can extract and fuse
multi-scale capsule features, resulting in high-resolution feature representations with rich
semantic information. Li et al. [25] introduced a set of cascaded global-attention modules
into the DenseUNet framework to extract contextual information of the road. Furthermore,
a set of cascaded core attention modules was embedded to ensure the adequate transmission
of road information between dense blocks, further assisting the global-attention module in
acquiring multi-scale features, thus improving the connectivity of the road network.

In complex road backgrounds, the shadows and occlusions caused by surrounding
trees and buildings have always been issues that need to be addressed. Zhou et al. [26]
proposed the D-LinkNet34 network based on LinkNet, using dilated convolutions to
expand the receptive field and capture multi-scale features, although this method still
suffers from many misdetections and missed detections of roads. Zhou et al. [27] classified
road scenes into edge-feature-dominated (EFD) roads and region-feature-dominated (RFD)
roads based on the density of road directional lines in the image. The EFD and RFD sections
are extracted using structural line grouping and the U-Net model, respectively. This method
is somewhat resistant to interference from shadows and occlusions, and effectively handles
roads under construction with incomplete spectral and geometric features.

Connectivity is a natural and critical feature of roads. Li et al. [28] implemented
pixel-level, edge-level, and region-level sharing in the encoder section and enhanced the
topological relationships through direction-aware processing, thus extracting roads with
higher integrity and connectivity. Mei et al. [29] proposed a Connectivity Attention Network
(CoANet), which learns pairwise dependencies. The model uses strip convolutions in four
directions to consider road directionality, calculates connectivity loss through a connectivity
cube, and thus strengthens the network’s learning of road connectivity. This method can
maintain high accuracy while preserving road connectivity. Tan et al. [30] proposed a
road-extraction network based on bidirectional spatial information reasoning (BSIRNet),
which captures spatial-context dependencies and inter-channel dependencies, effectively
improving road-extraction accuracy and completeness. Most deep learning methods
achieve high accuracy in road extraction, but the results still show significant road fractures
and fragmentation.
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The self-attention mechanism in the Transformer [11] has the ability to establish long-
range dependencies, showing excellent performance in many natural language-processing
tasks, and is increasingly gaining prominence in computer-vision tasks. Leveraging the
Transformer structure to perceive global context relationships and geometric information
of roads is crucial for improving road-segmentation accuracy. Chen et al. [31] proposed a
dual-branch encoding block combining Swin Transformer and ResNet, and added context-
guided filtering blocks in the skip connections to filter noise, better preserving local detail
information and reducing the number of broken road segments. To overcome the perfor-
mance limitations imposed by fixed patches in Transformer, Zhang et al. [32] proposed
obtaining coarse-grained and fine-grained feature representations from different scales in
the encoder section and integrating Transformers in the feature-fusion module to enhance
information interaction between the two, effectively addressing some road discontinuities
and maintaining the integrity of road-segmentation results. However, due to the computa-
tional demands of the self-attention mechanism, Transformer-based models have a clear
disadvantage in inference speed compared to CNN-based models.

These methods achieve high road-extraction accuracy, but for real-time applications,
model inference speed and computational efficiency must also be considered. In recent
years, some scholars have focused on lightweight models to meet the requirements of
real-time applications. Liu et al. [33] proposed a lightweight dynamic addition network
(LDANet), which introduces an improved Inception structure based on asymmetric convo-
lution blocks (ACBs) to expand low-level features in the feature-extraction layer. Addition-
ally, depth-wise separable convolutions (DSC) are used to reduce model computational
complexity, and an adaptive weighted summation module is designed to capture promi-
nent road features. This method has fewer than 1 MB of parameters and a fast inference
speed. Wang et al. [34] proposed using Atrous Spatial Pyramid Pooling (ASPP) to capture
multi-scale features [35], employing attention mechanisms to solve road discontinuity and
edge loss issues. This method has 2.85 MB of parameters, alleviating computational burden
and reducing training time while maintaining good performance. Xie Guobo et al. [36]
replaced the main encoder of DeepLabv3+ [37] with the lightweight MobileNetv2 [38]
and introduced depth-wise separable convolutions in the channel-space parallel attention
module to reduce the model’s parameters. Qu et al. [39] designed Road-MobileFormer
as the backbone network structure for Road-MobileSeg. In Road-MobileFormer, a coor-
dinate attention module is introduced to encode channel relationships and long-range
dependencies, along with precise location information, to improve road-extraction accu-
racy. Additionally, a micro-token pyramid module is introduced to reduce the number of
model parameters and computations, making it more lightweight. This method enables
high-precision and low-latency road extraction on mobile devices. These methods offer
advantages in real-time performance and computational efficiency, but their segmentation
accuracy is lower compared to larger models.

Deep learning-based road-extraction methods automatically learn road features to
obtain semantic information, not only enabling automated and precise road information
extraction but also handling large-scale road imagery datasets.

2. Materials and Methods
2.1. Dataset

Current publicly available remote-sensing datasets (such as DeepGlobe Road and
others) generally have spatial resolutions lower than 0.5 m, which makes it difficult to meet
the road feature analysis requirements for UAV low-altitude flight scenarios. Therefore,
this study has constructed a road-extraction dataset from the UAV perspective, DRS Road,
consisting of 2600 images. In order to better validate the effectiveness of the model proposed
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in this study, a publicly available dataset, DeepGlobe Road, was also chosen for comparison,
as it is as close as possible to the dataset used in this research.

2.1.1. DeepGlobal Road

The DeepGlobe Road dataset is a sub-dataset used in the DEEPGLOBE CVPR 2018
competition. It provides a large number of high-resolution sub-meter satellite images
along with corresponding pixel-level label information. The images are sourced from three
regions: Thailand, India, and Indonesia, encompassing various scenes such as urban, rural,
suburban, coastal, and tropical rainforests [40]. The size of the images is 1024× 1024, with a
resolution of 50 cm.

To address the issue of uneven scene distribution in this dataset, this study proposes a
hierarchical enhancement strategy. First, based on road density and surrounding landscape
features, the samples are divided into two categories: urban roads (high density, regular
geometric shapes) and rural roads (low density, complex background interference). Then,
stratified sampling is used to divide the dataset into training and validation sets in a
7:3 ratio, ensuring a balanced representation of both scene types during the training process,
as shown in Figure 1.

Figure 1. The processed DeepGlobe Road dataset. The dataset is divided into two parts: rural and
city areas. The first and third rows show the original images of rural and city areas, respectively,
while the second and fourth rows show the corresponding label maps for rural and city areas.

2.1.2. DRS Road

This dataset uses the DJI Zenmuse L1 Livox Lidar (DJI, Shenzhen, China) and the DJI
Zenmuse P1 (DJI, Shenzhen, China) optical camera to collect LiDAR and optical image data.

The optical remote-sensing data are collected using the DJI MTK300 RTK (DJI, Shen-
zhen, China) drone equipped with the DJI Zenmuse P1 optical camera, which can clearly
capture road and detail information. This data can not only be used for road extraction
tasks but also for subsequent road disease-detection tasks. This part of the dataset contains
1800 images, each with a resolution of 8192 × 5460, as shown in Figure 2, and was collected
under good lighting conditions.
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The LiDAR remote-sensing data are collected using the DJI MTK300 RTK drone
equipped with the DJI Zenmuse L1 Livox LiDAR camera. It can be used in all weather
conditions, unaffected by weather, lighting, or ground cover, and provides accurate eleva-
tion data. However, the images captured by the LiDAR camera are in the form of 3D point
clouds, requiring additional processing. The point-cloud data are reconstructed in three
dimensions to generate orthophotos and elevation images. The road center points are ex-
tracted at 1 m intervals from the generated orthophotos, and the central line is fitted. Based
on the central line, the rotation angle of each image is calculated, which can be derived from
the slopes of the central line at the front and rear of the image center. Afterward, the image
is cropped every 30 m and rotated based on the rotation angle, ultimately generating
road-surface images with no overlapping areas and unified orientation. The overall process
is shown in Figure 3. This part of the dataset contains 800 images, each with a resolution of
4320 × 3520, and was collected under good lighting conditions.

Figure 2. The self-built DRS ROAD dataset. This dataset consists of two parts: optical images and
orthophoto images. The first and third rows show the original orthophoto images and optical images,
respectively, while the second and fourth rows show the corresponding label maps for the orthophoto
and optical images.

All data collected in this study cover a total of 228 km of road sections across six cities
in Xinjiang, including road-surface images taken during spring, summer, and autumn.
The dataset covers various geographical environments, including desert, mountain roads,
urban roads, provincial roads, and national roads, meaning the dataset is characterized by
the following features:

(1) Multi-season and multi-geographical environments: The data span different sea-
sons and a variety of geographical environments (such as desert, mountainous ar-
eas, and urban roads), ensuring the representativeness and wide applicability of
the dataset.

(2) High resolution and precise calibration: The use of high-resolution P1 optical cameras
and LiDAR cameras ensures the accurate capture of image details, providing reliable
data support for subsequent road extraction and analysis tasks.

Therefore, this dataset provides a foundational platform for road extraction, disease
detection, and other related research using UAV remote-sensing imagery. Through meticu-
lous image-processing and annotation methods, this study ensures the high quality and
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reliability of the data, enabling effective support for subsequent deep learning model
training and testing.

Figure 3. L1 three-dimensional point-cloud processing diagram.

2.2. Road-Extraction Network PISCFF-LNet

In order to efficiently perform road-extraction tasks in resource-constrained or real-
time scenarios, this paper proposes a lightweight road-extraction network called PISCFF-
LNet, based on Prior Information and Spatial-Context Feature Fusion, as shown in Figure 4.

The overall architecture of PISCFF-LNet is illustrated in the figure, with design inspira-
tion derived from the UNeXt model in [14] and the DeepLabV3+ model in [36]. The model
uses the lightweight semantic segmentation model UNeXt as the base architecture and
incorporates a dual-branch structure along with a prior-information-assisted branch that
utilizes binarized images. First, the original image is input into the prior-information-
assisted branch for simple binarization, which is then used as prior information. This is
concatenated with the original RGB image, along the channel dimension, to merge and
serve as the input feature for the network model. This branch enriches the image features
in an unsupervised manner, providing the model with additional visual cues to guide the
learning of object locations and texture features.

Next, the encoder of UNeXt is employed as the context information branch (CIB)
to quickly extract contextual features of the image. Additionally, a lightweight spatial
information branch (SIB) is designed to extract rich spatial detail features. The fusion of
features from DI-ARM, which ensures effective feature transfer.
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Figure 4. PISCFF-LNet network structure diagram. The network consists of three main components.
The Prior Information module is used for edge feature extraction, providing additional road features.
The Double-Branch Encoder module adopts a dual-branch structure to extract spatial and contextual
information separately. The ARM module is responsible for fusing different features.

2.2.1. Prior-Information-Assisted Branch Based on Binarized Images

Considering that lightweight models generally have less feature-extraction capability
compared to more complex deep networks, selecting appropriate prior information is
crucial for model learning and understanding. Binarized images are simple and intuitive
with low dimensionality, and they can provide additional spatial information to the model
regarding the location of objects.

Therefore, this paper selects binarized images obtained through the Laplacian edge-
detection operator as prior auxiliary information to help the lightweight model better learn
and understand the image features without increasing the model’s complexity. The Lapla-
cian edge-detection operator is less sensitive to noise and less prone to discontinuous points.
The operator is defined as follows:

Lap =

 0 1 0
1 −4 1
0 1 0

 (1)

The convolution operation is performed on each pixel in the image using the Laplacian
operator matrix, and the specific formula can be expressed as:

L(x, y) = ∑
k

∑
l

I(x + k, y + l) · Lap(k, l) (2)

where I(x + k, y + l) represents the pixel value at the position ((x + k, y + l)), Lap(k, l)
represents the value of the convolution kernel at position (k, l), and L(x, y) represents the
new pixel value at position (x, y). By convolving the image with the discrete form of the
Laplacian convolution kernel, the second-order derivative of the image is approximated to
capture edge and region-change information in the image. To smooth the extracted edges,
this paper combines the Laplacian operator with Gaussian blur, which both suppresses
noise and efficiently detects image edges:

LoG(x, y) = ∇2(G(x, y) ∗ I(x, y)) (3)

where LoG(x, y) is the result of the Laplacian of Gaussian (LoG) operation, ∇2 is the
Laplacian operator, G(x, y) is the Gaussian kernel used to smooth the image and reduce
noise, I(x, y) is the intensity of the image at the pixel location (x, y).
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The extracted result, as shown in Figure 5, contains some full road information in the bi-
narized image, which provides auxiliary support for the road-extraction task. This method
makes the model more suitable for lightweight applications or resource-constrained scenar-
ios while enhancing the model’s accuracy and robustness in boundary feature recognition.

Figure 5. The comparison of extraction results. (a) is the original image; (b) is the label image; (c) is
the binary image of the original image; (d) is the image after lap processing.

However, directly using binarized images as prior auxiliary information may introduce
many irrelevant interference signals unrelated to the road. Therefore, to avoid directly
introducing interference in the feature map, this paper treats the binarized image as a
separate prior knowledge channel and concatenates it with the original image, forming a
four-channel image as the input to the network model. The specific process is shown in
Figure 6. This feature-fusion approach not only enhances the road location information
but also enables the model to learn more rich and accurate feature representations, thereby
improving the model’s generalization ability and robustness.

Figure 6. The flow diagram of the fusion of the original image and the binarized image.

2.2.2. Lightweight Spatial Information Branch and Context Information Branch

In semantic segmentation tasks, rich spatial information and a broad receptive field are
very important as they help the network model better understand the semantic content of
the image, thus accurately assigning each pixel to the correct semantic category. In semantic
segmentation models, rich spatial information is usually achieved through the use of
shallow features, which come from the shallower or intermediate layers of the model. Since
these features undergo fewer pooling operations, they maintain higher resolution, retaining
more details and spatial information, such as edges and textures. This information helps
the model better distinguish between different objects and structures in the image. A broad
receptive field, on the other hand, is achieved through deep features, which typically come
from the higher layers of the model. After multiple layers of convolution and pooling,
the image resolution decreases while the receptive field expands, enabling the model to
understand the context information over a larger area. This helps the model better capture
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relationships between objects and overall semantic information, thereby improving the
accuracy and robustness of semantic segmentation.

This paper decomposes the semantic segmentation task into two branches: a simple
context information branch to quickly obtain global semantic information at low resolution,
and a fine spatial information branch to capture more detailed semantic features at high
resolution. In the information–interaction design between the two branches, the feature-
fusion module effectively combines global and local information while considering both
spatial positions and pixel similarities, thus better preserving edge and detail information.

The spatial information branch (SIB) is mainly used to capture rich spatial information
by extracting shallow features at high resolution, retaining more details and spatial infor-
mation. The SIB is a simple stack of convolution and nonlinear mapping layers, consisting
of three stages, as shown Figure 7. To achieve efficiency, each stage contains only one
convolution layer with a kernel size of 3 × 3 and a stride of 2, along with BN and ReLU
activation functions, as expressed by the following formula:

X(l+1) = σReLU(BN(Conv(3×3,s=2)(X(l)))) (4)

Here, X(l+1) is the output feature map at the (l + 1)-th layer, produced by applying
the operations on the input X(l) from the l-th layer. σReLU represents the ReLU activation
function,BN denotes Batch Normalization, and Conv(3×3,s=2) refers to a 3 × 3 convolution
with a stride of 2.

Figure 7. SIB structure.

To retain rich spatial detail information, the SIB only reduces the resolution of the
feature map three times, ultimately producing a feature map that is 1/8th the size of the
input image. Additionally, compared to the context information branch, the SIB has more
channels, meaning it can encode more feature information, providing richer and more
diverse feature representations to enhance the model’s expressive ability. The design of the
SIB enables it to effectively capture the spatial structure and detailed information of the
image while maintaining a lightweight structure, providing more useful information for
subsequent feature encoding.

The context information branch (CIB) is designed to quickly expand the receptive field
to obtain richer context information, thereby enhancing the model’s discriminative ability.
To efficiently extract the context information of the image, the UNeXt encoder is used as the
basis for the context information branch. The UNeXt encoder has strong feature-extraction
capabilities and efficient computational performance, effectively capturing the context
information of the image while keeping the model lightweight.

Using a dual-branch structure allows the computational cost to be distributed across
the two branches, enabling each branch to independently handle local or global information.
This improves the model’s computational efficiency and inference speed, which is crucial
for real-time application scenarios. Additionally, the dual-branch structure allows for
the comprehensive use of both global and local information, better adapting to roads at
different scales, and thus improving the model’s accuracy and robustness.
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2.2.3. Dual-Branch Information Fusion Method Based on Attention Refinement Module

The lightweight spatial information branch (SIB) and context information branch (CIB)
form a dual-branch structure, which can also be regarded as a lightweight dual-encoder
structure. To encode richer spatial information, Stage 2 and Stage 3 of the SIB contain more
channels, allowing the resulting feature maps to have a richer and more diverse spatial
feature representation. However, directly fusing these features with the contextual features
from the CIB at the pixel level may introduce interference information.

To effectively integrate spatial information into the context information while main-
taining efficiency, this paper employs the Dual-Branch Information Attention Refinement
Module (DI-ARM) to refine the extracted spatial features before fusing them with the con-
text features, as shown in Figure 8. The detailed structure of the dual-branch information
fusion method based on the Attention Refinement Module is shown in the figure. Spatial
Feature represents the spatial features, and Context Feature represents the context features.

First, the spatial features are input into the DI-ARM module. After undergoing
global pooling, 1 × 1 convolution, Batch Normalization (BN), and a Sigmoid function,
the importance weights of each channel are obtained, as expressed by the formula:

g =
1

HW

H

∑
i=1

W

∑
j=1

X(:,i,j) (5)

zBN =
z− µ√
σ2 + ϵ

⊙ γ + β (6)

s = σ(BN(Conv1×1(GAP(X)))) (7)

In the equation above, g represents the result of global average pooling (GAP), H and
W are the height and width of the input X, and X(:,i,j) denotes the feature map at position
(i, j) in X; zBN is the output after Batch Normalization (BN), z is the input feature map, µ is
the mean, σ2 is the variance, ϵ is a small constant for numerical stability, and γ and β are
the learnable scale and shift parameters. s is the final output, Conv1×1 represents the 1 × 1
convolution, GAP(X) is the global-average-pooled feature, BN is the Batch Normalization,
and σ is the Sigmoid function.

Then, the weights are multiplied by the original spatial features, refining the spatial
features in an attention mechanism manner.

X′ = σ(BN(Conv1×1(GAP(X)))⊙ X) (8)

Finally, the refined spatial features are added to the context features, resulting in the
fused feature map.

Xfusion = σ(BN(Conv1×1(GAP(X))))⊙ X + Xctx (9)

where Xfusion represents the fused feature map obtained by combining the refined spatial
features and the context features, and Xctx represents the context features.

This method effectively highlights important spatial features and merges them with
the context features, thereby improving the model’s feature-representation ability.
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Figure 8. Dual-Branch Information Attention Refinement Module

2.3. Drone Interfacing
2.3.1. Ray-Based Eight-Neighborhood Algorithm

To address the issue of misclassification in road extraction model predictions, this
study proposes a ray scanning-based eight-neighbor optimization algorithm (RENA). This
algorithm extracts road edges to obtain more accurate road information, providing precise
target-location data for drones. RENA improves the time complexity from O(N2) to O(N) by
using an innovative seed-point generation mechanism and a direction-constrained search
strategy, while maintaining edge continuity.

In a 2D image, each pixel can be defined by its neighboring pixels, with the eight-
neighbor rule referring to the eight surrounding pixels of a given pixel, as shown in Figure 9.
The traditional eight-neighbor algorithm employs a breadth-first search (BFS) for region
traversal. It scans the eight neighbors of the central pixel, adding any white-to-black
transition points to the queue. This process is repeated until all pixels in the queue are
examined. As a result, the time complexity of this method is O(N2), and it is highly
susceptible to misclassification interference.

Figure 9. Eight-neighborhood diagram.

The RENA algorithm proposed in this study improves the starting point selection and
search algorithm of the traditional eight-neighbor method.

First, to prevent misclassification interference from both within and outside the road
area (as shown in Figure 10a), a ray seed generator is used to select the starting point.
This method uses the midpoint of the image’s bottom edge as the ray source and scans
in four directions: ±30° and ±60°. When a white-to-black transition is detected, the point
is identified as a boundary point, and this point is selected as the starting point. This
approach allows for the identification of four starting points.

Second, a direction-constrained search strategy is applied, with different neighborhood
detection methods used for the left and right boundaries of the road:

• Left boundary: Detect the 8 key neighboring pixels in a counterclockwise direction
(0 → 1 → 2 → 3 → 4 → 5 → 6 → 7)

• Right boundary: Detect the 8 key neighboring pixels in a clockwise direction (0 → 7
→ 6 → 5 → 4 → 3 → 2 → 1)

When a white-to-black pixel transition is detected within a neighborhood, the search
terminates immediately, and the transition point is selected as the new detection point for
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the direction-constrained search. This strategy reduces the average number of neighbor-
hood checks to 2.3 checks per pixel and eliminates path oscillations.

After completing this process, four sets of boundary points (two for each side) can be
obtained. It is important to note that boundary points may either represent misclassified
gaps within the road or the road’s actual edges. To exclude misclassified internal gaps,
the number of boundary points on the same side generated by RENA is compared. The set
with more boundary points is selected as the road edge. The complete and detailed
algorithm is provided in Algorithm 1.

To validate the performance of RENA, experiments were conducted in this study
on a laptop equipped with an i7-12650 CPU (Intel Corporation, Santa Clara, CA, USA).
The input image size was 224× 224, and the results are shown in Table 1, with the processed
image shown in Figure 10c. As seen in the table, compared to the traditional eight-neighbor
algorithm, RENA reduces processing time by over 99%, providing a foundation for real-
time precise navigation for drones.

Table 1. Comparison of RENA with traditional eight-neighbor algorithm.

Algorithm Time Complexity Space Complexity Processing Time (ms)

Eight-Neighbor Algorithm O(N2) O(N2) 9200
RENA O(N) O(1) 10

Algorithm 1 Ray-based edge navigation algorithm (RENA)

Require: Sensor image I ∈ RH×W

Ensure: Target coordinate (xt, yt), fitting curves Cl , Cr
1: Initialize:
2: Obtain predicted map P← Model(I)
3: (H, W)← GetImageDimensions(P)
4: O← (W/2, H) ▷ Bottom-center origin
5: D ← {30◦, 60◦, 120◦, 150◦} ▷ Scanning directions
6: El , Er ← ∅ ▷ Left/Right edge sets
7: Edge-detection phase:
8: for each θ ∈ D do
9: Ray scanning: k← 0

10: while True do
11: (xk, yk)← O + k · ∆ · (cos θ, sin θ) ▷ ∆ = 1 pixel
12: if (xk, yk) /∈ P then break
13: end if
14: if P(xk, yk) < 128∧ P(xk−1, yk−1) ≥ 128 then
15: Sθ ← (xk, yk)
16: break
17: end if
18: k← k + 1
19: end while
20: end for
21: Direction-constrained tracing:
22: current← Sθ

23: edge_set← [current]
24: search_order← (θ < 90◦?CCW : CW) ▷ CCW: [0, 7, 6, 5, 4, 3, 2, 1]
25: ▷ CW: [0, 1, 2, 3, 4, 5, 6, 7]
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Algorithm 1 Cont.

26: while True do
27: for offset ∈ search_order do
28: neighbor← current + offset_to_coord(exto f f set)
29: if neighbor /∈ P then continue
30: end if
31: if P(neighbor) < 128∧ P(current) ≥ 128 then
32: edge_set.append(extneighbor)
33: current← neighbor
34: break
35: end if
36: end for
37: if no valid neighbor found then break
38: end if
39: end while
40: Edge Grouping:
41: if θ ∈ {30◦, 60◦} then
42: El ← El ∪ edge_set
43: else
44: Er ← Er ∪ edge_set
45: end if
46: Edge Selection:
47: E∗l ← arg maxE∈El (|E|) ▷ Select longest continuous edge
48: E∗r ← arg maxE∈Er (|E|)
49: Curve Fitting:
50: Cl ← LeastSquaresFit(E∗l , a · x2 + b · x + c) ▷ Solve via Equation (5)
51: Cr ← LeastSquaresFit(E∗r , a · x2 + b · x + c)
52: Target Calculation:
53: yt ← H/8
54: xl ← Solve Cl(yt)
55: xr ← Solve Cr(yt)
56: xt ← (xl + xr)/2
57: return (xt, yt), Cl , Cr
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Figure 10. RENA results. (a) is the original image; (b) is the ray seed selection; (c) is the extracted
edge point; (d) is the curve obtained by fitting the set of edge points; (e) is the fitting comparison
between the fitting curve and the edge point; (f) is the fitting curve and the calculated target point.

2.3.2. Flight Control

In the flight-control section, the system needs to calculate the yaw angle and linear
velocity of the drone based on the target point and the current position. The position
control module first computes the error between the current position and the target position,
and generates the corresponding control signals. The error is calculated as follows:

ex = xtarget − xcurrent, ey = ytarget − ycurrent (10)

Based on the errors ex and ey, a PID controller is used to generate the control signals:
vx = Kpex + Kd

dex

dt
+ Ki

∫
ex dt

vy = Kpey + Kd
dey

dt
+ Ki

∫
ey dt

(11)

Here, vx and vy are the control signals for the x-axis and y-axis. Kp, Kd, and Ki are the

proportional, derivative, and integral gains of the PID controller. dex
dt and dey

dt are the time
derivatives of the errors, representing the rate of change of the error.

∫
ex dt and

∫
ey dt are

the integrals of the errors over time, capturing the accumulated error.



Drones 2025, 9, 226 18 of 30

Next, the system performs heading control to align the drone’s nose with the direction
of the road. The heading angle error is calculated as:

eθ = θtarget − θcurrent (12)

where θtarget is the direction of the road, derived from the slope of the line, and θcurrent

is the current heading angle of the drone. The heading control also employs a PID controller:

uθ = Kpeθ + Kd
deθ

dt
+ Ki

∫
eθ dt (13)

The drone’s speed control is dynamically adjusted based on the curvature of the road.
Typically, the drone needs to decelerate in curves to avoid deviating from the path, while it
can accelerate on straight sections. The speed v is related to the road curvature κ as follows:

v = vmax(1− ακ) (14)

where κ is the curvature, α is the speed-adjustment coefficient, and vmax is the maxi-
mum speed of the drone. After computing the control signals, the system transmits the
commands to the drone via the MAVLink protocol, adjusting its target position, attitude,
and speed to ensure the successful completion of the flight mission.

The complete control pipeline operates as illustrated in Figure 11. In the vision process-
ing phase, road images captured by visual sensor are fed into the proposed PISCFF-LNet
model. Subsequently, the RENA module processes these segmentation images, extracting
geometrically consistent road boundaries and outputting target waypoint coordinates
(xtarget, ytarget).

During the control phase, the UAV’s current position (xcurrent, ycurrent) and the RENA-
derived target waypoint are transmitted to the PID controller through ROS topics. The con-
troller calculates velocity vectors (vx, vy) and yaw angle uθ by Equations (11) and (13).

Finally, these control commands are converted into MAVROS-compliant messages
and dispatched to the PX4 flight stack, which dynamically adjusts rotor thrusts through
its built-in mixer module to execute the trajectory. This closed-loop integration ensures
seamless coordination between vision-based perception and flight dynamics, with a total
latency of 75.7 ms from image capture to actuator response.

Figure 11. Complete UAV control process.
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3. Result
3.1. Relevant Metrics
3.1.1. Intersection over Union IoU

IoU is a widely used metric for evaluating the accuracy of predicted regions in object
detection or segmentation tasks. It is defined as the ratio of the area of overlap between
the predicted region and the ground truth to the area of their union. The formula is
expressed as:

IoU =
Area of Overlap
Area of Union

(15)

An IoU threshold is often used to determine whether a prediction is considered
a true positive. Higher IoU values indicate better alignment between predictions and
ground truth.

3.1.2. F1-Score

The F1-score is the harmonic mean of precision and recall, providing a single metric
that balances both. It is particularly useful when the dataset is imbalanced. The F1-score is
calculated as:

F1 = 2 · P · R
P + R

(16)

where P is precision, and R is recall. A higher F1-score indicates a better trade-off
between precision and recall.

3.1.3. Frames per Second—FPS

FPS is a key metric for evaluating the computational efficiency and real-time perfor-
mance of a model, particularly in tasks involving autonomous navigation and real-time
image processing. FPS measures the number of frames that the system can process per
second and is defined as:

FPS = N/T (17)

where N represents the total number of processed frames, and T is the total time taken
to process these frames (in seconds).

A higher FPS indicates that the model operates with greater efficiency, making it
suitable for real-time applications such as autonomous drone navigation. In contrast,
a lower FPS may lead to latency issues, affecting the responsiveness and stability of the
system. The FPS performance is influenced by multiple factors, including model complexity,
hardware capabilities, and optimization strategies.

3.2. Experimental Result

All our models are trained and tested using NVIDIA 4060 GPU, equipped with 16 GB
of memory. Our model implementation is based on the Pytorch 1.12.1 deep learning
framework, using Python 3.9.13 as the programming language, and the operating system is
Ubuntu 22.04. During the training process, the Adam optimizer was employed for network
model training with an initial learning rate of 2 × 10−3. To prevent overfitting, a dropout
regularization technique with a dropout rate of 0.2 was applied. If the loss value ceased to
decrease during training, the learning rate was gradually reduced by multiplying it by 0.2
until the learning rate fell below 5 × 10−7, at which point the training would terminate.
This approach ensures optimal training outcomes and model performance. Throughout
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all experiments, we do not use pretrained weights. We employs a composite loss function
combining Binary Cross-Entropy Loss and Dice Loss, mathematically formulated as (18):

Loss = Dice Loss + Focal Loss

= 1−
2
∣∣Xp ∩Yl

∣∣∣∣Xp
∣∣+ |Yl |

+−(1− pt)
γ log(pt)

(18)

where Xp is predicted segmentation and Yl is the ground truth. pt is the predicted
probability for the true class, and γ is the focusing parameter that controls the strength of
down-weighting for easy examples.

To comprehensively evaluate the capabilities of the proposed road-extraction algo-
rithm, this study conducted training and testing of PISCFF-LNet alongside comparative
algorithms using both the DeepGlobe Road dataset and a self-constructed dataset. The cor-
responding training processes and road-extraction experimental results are systematically
summarized in Table 2, and the comparison of model prediction results is shown in Figure 12.

Figure 12. Comparison chart of model prediction results. The green areas represent the road pixels
correctly detected by the model, the red areas represent the road pixels incorrectly detected by the
model, and the blue areas represent the road pixels that were not detected by the model. (a) is the origi-
nal image, (b) is the label image, and (c–h) are the prediction results of DeepLabV3plus_MobileNetV2,
DeepLabV3plus_xception, UNeXt, BiSeNetV2, STDC1, and PISCFF-LNet, respectively.
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Table 2. Quantitative evaluation results. Bold numbers indicate the optimal experimental results.

Methods
DeepGlobe Road DRS Road Model Index

IoU F1-Score IoU F1-Score Params (M) FLOPs (G) FPS

DeepLabV3plus_MobileNetV2 65.71% 79.31% 88.58% 93.95% 5.81 26.42 2.22
DeepLabV3plus_xception 64.36% 78.31% 87.31% 93.23% 54.71 83.42 0.73
UNeXt [14] 65.70% 79.30% 88.54% 93.92% 1.47 2.29 7.21
BiSeNetV2 [41] 64.98% 78.77% 88.01% 93.62% 3.61 12.91 3.75
STDC1 [42] 49.38% 66.11% 83.86% 91.22% 14.23 23.52 4.72
PISCFF-LNet [ours] 66.86% 80.14% 89.61% 94.52% 2.31 5.38 5.39

As shown in Table 2, for the IoU and F1-Score metrics, the method proposed in this
chapter achieves the best results on both the DeepGlobe Road dataset and the DRS Road
dataset, with IoU reaching 66.86% and 89.61%, respectively. Compared to the second-best
performing DeepLabV3+_MobileNetV2 model in terms of segmentation performance, our
method improves IoU and F1-Score by 1.15%, 0.83% and 1.03%, 0.57% on the two datasets,
respectively. Notably, the performance improvement is significant on the IoU metric,
indicating that our method can more effectively capture road features and accurately
identify the location and shape of roads. Additionally, the number of parameters for
PISCFF-LNet is only 2.31 million, with a floating-point operation count of 5.38 G and an
FPS of 5.39. Compared to the DeepLabV3+_MobileNetV2 model, the number of parameters
is reduced by 60.24%, floating-point operations are reduced by 79.67%, and FPS is improved
by 142.79%. This indicates that PISCFF-LNet has a lower computational complexity, making
it suitable for deployment on edge devices and applicable in real-time scenarios. We have
conducted a comprehensive evaluation of all models, with the evaluation formula as
Equation (19):

Score = α · IoU + β · FPS (19)

where α is 0.7 and β is 0.3. The final evaluation result is shown in Figure 13. As shown
in the figure, our model leads with a score of 48.42, which indicates that our model achieves
the best balance between segmentation performance and efficiency.

Figure 13. The scores of different models.
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3.3. Ablation Studies

To validate the effectiveness of each module in the PISCFF-LNet road-extraction
algorithm, this study conducted ablation experiments by replacing or removing the cor-
responding modules. The results of the ablation experiments using the DeepGlobe Road
dataset are shown in Table 3.

Table 3. Ablation experiment results. Bold numbers indicate the optimal experimental results.

No. PIA CIB-SIB DI-ARM Seg Accuracy IoU Precision Recall F1-Score

1 98.21% 64.87% 78.77% 78.61% 78.69%
2 Y 98.23% 65.05% 79.30% 78.35% 78.82%
3 Y Y 98.20% 64.54% 79.02% 77.89% 78.45%
4 Y Y Y 98.32% 66.69% 80.20% 79.83% 80.02%
5 Y Y Y Y 98.34% 66.86% 80.81% 79.48% 80.14%

This study employs a hierarchical progressive ablation experimental framework, grad-
ually introducing key modules to verify the model optimization effects. The configurations
for each scheme are as follows:

No.1 (Baseline Model): Constructed a two-stage decoder architecture based on the
UNeXt encoder, with a standard semantic segmentation head connected at the end.

No.2: Embedded a prior-information-assisted branch based on the binarized images
on the top of No.1.

No.3: Integrated a lightweight spatial information branch (SIB) on the top of No.2.
No.4: Introduced the Attention Refinement Module (DI-ARM) on top of No.3 to

implement dual-branch feature fusion.
No.5: Extended a collaborative supervision mechanism with dual semantic segmenta-

tion heads on top of No.4.
Compared to the baseline model No.1, No.2 achieved an IoU/F1-Score improvement

of 0.18%/0.13%, demonstrating that the spatial prior information provided by the bina-
rized road masks can effectively establish geographic constraints. This branch, through
a learnable attention mechanism, encodes road topological priors into the feature space,
alleviating the misdetection issues under complex backgrounds. No.3, with the addition
of the SIB branch on top of No.2, saw an IoU increase of 0.86%. This module encodes
spatial information and, with only a 0.34 M parameter increase, achieves multi-scale context
awareness. No.4, after introducing DI-ARM, produced a significant performance boost,
with IoU/F1-Score improvements of 2.15%/1.57% over No.3. This module recalibrates
feature importance in the channel dimension and subsequently constructs a spatial cor-
relation matrix using deformable convolutions, enhancing the key road feature-response
strength by 43%. No.5, with the dual-segmentation-head architecture, further improved
IoU by 0.17%. By adding a second semantic segmentation head, the network effectively
gathers global context information from the deeper layers and utilizes dual-loss constraints,
thereby enhancing segmentation accuracy.

3.4. Experiments on UAV

To validate the stability and robustness of the autonomous flight algorithm based on
road extraction proposed in this paper, flight experiments were conducted in both simulated
and real-world environments using an unmanned aerial vehicle (UAV). The UAV’s flight-
control method is introduced and explained in Section 2.3.2. In the PID control algorithm,
the parameters for Equation (11) were set as Kp = 1.2, Ki = 0.05, and Kd = 0.3; for
Equation (13), the parameters were configured as Kp = 1.8, Ki = 0.08, and Kd = 0.4.
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3.4.1. Simulation Environment Experiments

In this study, a comprehensive simulation experimental platform was constructed us-
ing the Gazebo simulator and the XDrone framework. Gazebo, as a widely used simulation
platform in the field of robotics, is capable of accurately simulating various environmen-
tal variables, including road morphology, obstacle distribution, and weather conditions.
The XDrone framework, on the other hand, integrates core functionalities for UAV control
and path planning, effectively supporting key tasks such as target-point extraction and
flight-trajectory optimization.

The configuration of the simulation experimental platform in this study is shown in
Table 4. As illustrated in Figure 14, the software environment primarily consists of two core
modules: the deep learning module and the autonomous-flight-control module. The deep
learning module is built on the CUDA and PyTorch frameworks, with essential libraries
such as NumPy and OpenCV configured. The autonomous-flight-control module integrates
open-source frameworks including Gazebo 11.0, ROS, MAVROS 1.14.0, and XDrone 1.5,
along with the deployment of core algorithm code for UAV control.

Table 4. Experimental software and hardware environment information.

Name Configuration

CPU Intel(R) Core(TM) i7-12650H 2.30 GHz (Intel
Corporation, Santa Clara, CA, USA)

GPU NVIDIA RTX 4060 (NVIDIA Corporation,
Santa Clara, CA, USA)

Memory 32 GB
Operating System Ubuntu 20.04.6 LTS
Data Processing OpenCV, PIL
Python Version Python 3.9.13

Deep Learning Framework PyTorch 2.1.0
CUDA Version CUDA 11.8

Figure 14. Gazebo simulation-environment software configuration.
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In the simulation experiments, a quadrotor UAV was selected as the experimental
platform, with its initial spatial coordinates set to (0, 0, 0) and a fixed takeoff altitude of 15
m. The experimental parameters were configured as follows: the real-time factor was set to
1.0, and the maximum flight speed was limited to 5 m/s. As shown in Figure 15, the visual-
ization results of the simulation environment demonstrate that the UAV achieved relatively
stable autonomous flight in the simulated scenario. This validates the effectiveness and
reliability of the proposed algorithm in the simulation environment.

Figure 15. Flight-path experiment of UAV in simulation environment.

3.4.2. Real-Environment Experiment

To validate the practical performance of the proposed autonomous flight methodol-
ogy in complex environments, this study conducted real-world flight experiments using
the P450 quadcopter manufactured by AMOVLAB in Chengdu, China. The UAV, with
dimensions of 290mm × 290mm × 240mm (length × width × height) and a weight of
approximately 2.044 kg, is visually presented in Figure 16. Its comprehensive hardware
configuration details are systematically documented in Table 5. The experimental system
architecture primarily consists of three core modules: (1) the PISCFF-LNet module, respon-
sible for acquiring road-extraction maps; (2) the RENA module, used for road fitting and
calculating target-point position information; and (3) the flight-control module, which com-
putes speed and yaw angle through the PID algorithm and transmits control commands to
the PX4 flight-control system, ultimately achieving precise control of the UAV’s attitude.
During the experimental campaign, the open-source framework Prometheus[43] devel-
oped by AMOVLAB was strategically leveraged as the primary development and testing
platform, with full system integration implemented on a laptop-based computational node,
with hardware configurations consistent with Table 4.
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Figure 16. AMOVLAB P450 UAV.

Table 5. AMOVLAB P450 UAV hardware configuration information.

Name Specification/Model

Frame MFP_V1 410 mm
Onboard Computer Viobot RK3588

Battery FB45 4S 5000 mAh
Remote Controller AMOVLAB QE-2
Flight Controller Pixhawk 6C

Video Transmitter Mini Homer
Motor 2312 960 kv

Propeller 0-inch

The real-world flight experiments in this study were conducted on the S228 Highway
in Qinghe County, Altay Prefecture, Xinjiang Uygur Autonomous Region, covering the
section from K150 to K214. Two test flights were performed, with a cumulative flight
distance of 800 m. The experiments utilized a fixed-altitude flight mode, and the specific
test segments were configured as follows: (1) straight segment: The flight starting point
was located at a latitude of 45.943524° north and s longitude of 90.153644° longitude, with a
takeoff altitude of 1021 m, and a total length of 500 m; (2) curved segment: The flight
starting point was located at a latitude of 46.030192° north and a longitude of 90.153069°
east, with a takeoff altitude of 1026 m, and a total length of 300 m. The selection of this
experimental site fully considered the diversity of road morphology, providing an ideal
testing environment to validate the algorithm’s adaptability to varying conditions.

The real-time road-processing results during the flight are shown in Figure 17.
Among them, (b) is the road prediction map generated by PISCFF-LNet, and (c) is the
final result map processed by RENA. Through experimental analysis, the following conclu-
sions can be drawn: (1) PISCFF-LNet demonstrates excellent road prediction performance,
with an average frame rate (FPS) of 15.22, meeting the requirements for real-time process-
ing; (2) due to factors such as reduced image resolution and varying lighting conditions,
some misidentification occurs in the prediction map, particularly in the third column
of the curved segment, where significant issues of lighting imbalance and insufficient
illumination are observed. To address these challenges, the proposed RENA algorithm
effectively improves the road-extraction results: first, the road information processed by
RENA becomes clearer and more complete, significantly enhancing extraction accuracy;
second, RENA generates more accurate target-point position information, providing more
reliable navigation guidance for UAV flight control.

To systematically evaluate the performance of the algorithm, this study employed
quantitative analysis methods by comparing the actual flight trajectory with the manually
preset expected trajectory, as shown in Figure 18. The experimental data indicate that
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the actual flight trajectory exhibits a high degree of spatial consistency with the expected
trajectory, with a maximum deviation of only 0.27 m. Statistical analysis reveals that 86.2%
of the trajectory points have errors less than 0.1 m, with an average deviation of 0.08 m
and a standard deviation of 0.05 m. These quantitative results confirm the accuracy and
reliability of the proposed method in practical applications from multiple dimensions: first,
the small maximum deviation value demonstrates the algorithm’s high control precision;
second, the high proportion of trajectory points with minimal errors reflects the algorithm’s
stability and consistency; and finally, the small average deviation and standard deviation
further validate the algorithm’s robustness.

Figure 17. The real-time road-processing results during the UAV flight. The green area represents
the road semantic segmentation result of the model, the yellow lines denote the road edge fitting
results obtained using the RENA algorithm, and the red dots indicate the target points of the drone’s
flight path. (a) displays the original road image, (b) shows the road prediction map generated by
PISCFF-LNet, and (c) presents the final result map processed by RENA. The first and second columns
depict the straight-road segments, while the third column represents the curved-road segment.

Figure 18. P450 UAV flight trajectory and expected trajectory comparison diagram. (a) is the UAV’s
flight trajectory on a straight road, while (b) is the UAV’s flight trajectory on a curved road.
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3.4.3. Interpretation of Results

By comparing and analyzing the flight trajectories in both simulated and real-world
environments, this study draws the following important conclusions: despite the presence
of significant noise interference and uncertainties in the real-world environment, the pro-
posed algorithm maintains high flight accuracy and system stability. The experimental
results demonstrate that the autonomous flight algorithm for UAVs based on road ex-
traction not only exhibits strong theoretical feasibility but also demonstrates outstanding
practical application value. Specifically, the algorithm’s performance in the simulated envi-
ronment is highly consistent with its performance in the real-world environment, which
fully proves its adaptability and reliability across different application scenarios, meeting
the requirements of practical engineering applications.

4. Discussion
The experimental results demonstrate that the proposed PISCFF-LNet and RENA

algorithms significantly enhance the accuracy and efficiency of UAV autonomous flight in
complex environments. Compared to existing methods, PISCFF-LNet achieves a balance
between computational efficiency and segmentation performance. The dual-branch encoder
architecture effectively addresses the trade-off between spatial detail preservation and
contextual feature extraction, while the attention-based fusion module enables adaptive
integration of multi-scale information. Notably, the introduction of prior knowledge
through binarized edge maps provides critical geometric constraints for road topology
learning, which is particularly beneficial for handling fragmented road structures in remote-
sensing imagery. This aligns with recent studies [24,33] emphasizing the importance of
incorporating spatial priors in lightweight segmentation models.

The RENA algorithm’s remarkable processing speed (10 ms per frame) addresses
a critical bottleneck in real-time UAV navigation systems. By reducing the time com-
plexity from O(N2) to O(N) through directional constraint strategies and ray-based seed
selection, this approach demonstrates superior computational efficiency compared to the
traditional eight-neighborhood algorithm. The experimental validation in both simulated
and real-world environments confirms that the combination of lightweight segmentation
and optimized edge extraction enables stable flight control and average deviation is 0.08 m,
meeting the requirements for practical applications in road inspection and remote-sensing
data collection.

However, several limitations warrant further investigation. First, the current model
exhibits reduced robustness under extreme lighting variations, particularly in scenarios
with intense shadows or low illumination. Second, while the DRS Road dataset covers
diverse geographical environments, its seasonal variation remains limited to three seasons.
Future work should incorporate winter scenarios with snow coverage to enhance model
generalization. Third, the PID-based control strategy, though effective for basic terrain
following, may struggle with sharp road curvatures exceeding 45°. Integration with model
predictive control frameworks could improve trajectory tracking performance in complex
road networks.

The proposed method’s computational efficiency (5.38 GFLOPs) makes it particularly
suitable for deployment on embedded systems like NVIDIA Jetson platforms. Compared
to LiDAR-based solutions [18,20], the vision-only approach reduces hardware costs by
83% while maintaining comparable navigation accuracy in GNSS-denied environments.
This cost effectiveness could democratize access to autonomous UAV technologies for
infrastructure inspection applications.

From a methodological perspective, the stratified sampling strategy applied to the
DeepGlobe dataset effectively mitigates class imbalance issues, as evidenced by the 1.06%
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IoU improvement over baseline methods. The success of the dual-loss supervision mech-
anism further emphasizes the complementary benefits of geometric and probabilistic
constraints in segmentation model training.

In practical applications, the system’s 75.7 ms end-to-end latency meets the real-time
requirements for UAV navigation at speeds up to 5 m/s. However, the current imple-
mentation processes images at 15 FPS on embedded hardware, suggesting potential for
optimization through quantization or neural architecture search techniques. Future integra-
tion with SLAM systems could enable fully autonomous missions in unknown environmen.

5. Conclusions
This study proposes a road-extraction-based UAV autonomous flight method to ad-

dress some of the challenges in the field of UAV autonomous flight. Additionally, a dataset
consisting of 2600 images from the UAV perspective was constructed, and a new road-
extraction network, PISCFF-LNet, along with a ray-based eight-neighborhood algorithm
(RENA), was introduced. In PISCFF-LNet, several methods were proposed, including prior
information assistance, a dual-branch encoder, and a feature-fusion module. The prior-
information assistance module helps the model better extract road-edge features; the dual-
branch encoder module allows for the extraction of features from different dimensions,
enriching feature details; the feature-fusion module guides the fusion of dual-branch fea-
tures, enabling effective feature transfer; and the dual-segmentation head applies dual-loss
constraints to improve the model’s accuracy and robustness.

In UAV control, this study proposes the ray-based eight-neighborhood algorithm
(RENA), which finds seed points via rays and determines the edge points of the eight
neighborhoods starting from the seed points. This algorithm achieves a time complexity
of O(n) and helps avoid some misclassification issues. Additionally, the PID algorithm
is used to control UAV flight based on the error between the current position and the
target position.

The test results show that PISCFF-LNet achieves the best detection performance on
the DeepGlobe Road and DRS road datasets, effectively balancing detection performance
and computational efficiency. Furthermore, the improved eight-neighborhood algorithm
proposed in this study can quickly extract road edges with a 10ms delay, providing the
foundation for accurate target-point setting in UAV flight.

In the UAV performance evaluation experiments, systematic tests were conducted in
both simulated and real-world environments. The experimental data indicate that the UAV
employing the proposed autonomous flight method demonstrates excellent performance:
the overlap rate between the actual flight trajectory and the expected trajectory reaches
86.2%, and the maximum tracking error is only 0.27 m. The experimental results validate the
effectiveness, precision, and robustness of the proposed method from multiple dimensions.
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